10.已知角α的終邊與圓心為原點(diǎn)的圓交于點(diǎn)P(1,2),那么sin2α的值是( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

分析 利用三角函數(shù)的定義,計(jì)算α的正弦與余弦值,再利用二倍角公式,即可求得結(jié)論.

解答 解:由題意,|OP|=$\sqrt{5}$,∴sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{1}{\sqrt{5}}$,
∴sin2α=2sinαcosα=2×$\frac{2}{\sqrt{5}}$×$\frac{1}{\sqrt{5}}$=$\frac{4}{5}$,
故選:B.

點(diǎn)評(píng) 本題考查三角函數(shù)的定義,考查二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若$\int_0^T{{x^2}dx=9}$,則常數(shù)T的值是( 。
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=x2+2x,$g(x)={(\frac{1}{2})^x}+m$,若任意x1∈[1,2],存在x2∈[-1,1],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值范圍是m≤$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知向量$\overrightarrow a=({sinωx,cosωx}),\overrightarrow b=({2sinωx,2\sqrt{3}cosωx})$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b+λ,({x∈R})$的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱,且經(jīng)過(guò)點(diǎn)$({\frac{π}{4},\sqrt{3}})$,其中ω,λ為實(shí)數(shù),ω∈(0,2).
(1)求f(x)的解析式;
(2)若銳角α,β滿足$f({\frac{α}{2}+\frac{π}{3}})=\frac{2}{7},f({\frac{α+β}{2}+\frac{π}{12}})=\frac{{5\sqrt{3}}}{7}$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-2x-3})+\sqrt{x-1}$的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果不等式ax2+bx+c>0的解集為{x|-2<x<4},那么對(duì)于函數(shù)f(x)=ax2+bx+c應(yīng)有( 。
A.f(5)<f(2)<f(-1)B.f(-1)<f(5)<f(2)C.f(2)<f(-1)<f(5)D.f(5)<f(-1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=x3-3x+1的單調(diào)減區(qū)間為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知θ∈(0,$\frac{π}{2}$),求g(θ)=($\frac{1}{2}$+cosθ)($\frac{\sqrt{3}}{2}$+sinθ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知f(x)=1000x-1,則f-1(10000)=$\frac{7}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案