20.已知f(x)=1000x-1,則f-1(10000)=$\frac{7}{3}$.

分析 f(x)=1000x-1,利用10000=1000x-1,解得x即可得出.

解答 解:∵f(x)=1000x-1,
由10000=1000x-1
解得4=3(x-1),
解得x=$\frac{7}{3}$.
則f-1(10000)=$\frac{7}{3}$.
故答案為:$\frac{7}{3}$.

點評 本題考查了互為反函數(shù)的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知角α的終邊與圓心為原點的圓交于點P(1,2),那么sin2α的值是(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知菱形的兩鄰邊$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,其對角線交點為D,則$\overrightarrow{OD}$等于( 。
A.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow$+$\overrightarrow{a}$C.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$)D.$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知在邊長為1的正方形ABCD中,E、F分別在線段AB,BC上運動,若EF=1,則$\overrightarrow{EC}$$•\overrightarrow{FD}$的取值范圍是( 。
A.[1-$\sqrt{2}$,0]B.[0,$\sqrt{2}$+1]C.[$\sqrt{2}$-1,$\sqrt{2}$+1]D.[1,$\sqrt{2}$+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α,β∈(0,$\frac{π}{2}$),且sinα=$\frac{4}{5}$,cos(α+β)=-$\frac{16}{65}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下面有四個結(jié)論:
①第一項起乘相同常數(shù)得后一項,這樣所得到的數(shù)列一定為等比數(shù)列;
②常數(shù)列b,b,b,…,b一定為等比數(shù)列;
③等比數(shù)列{an}中,若公比q=1,則此數(shù)列各項相等;
④在等比數(shù)列中,各項與公比都不為零.
正確說法的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.α是第四象限角,cosα=$\frac{12}{13}$,則sin(20kπ-α)=( 。
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左右焦點分別為F1、F2,過F1且垂直于x軸的直線與雙曲線左支交于A、B兩點,若△ABF2為正三角形,則雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.動點P到兩定點F1(0,-4),F(xiàn)2(0,4)的距離之和為10,則動點P的軌跡方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{9}+\frac{y^2}{25}=1$C.$\frac{x^2}{16}+\frac{y^2}{25}=1$D.$\frac{x^2}{100}+\frac{y^2}{36}=1$

查看答案和解析>>

同步練習(xí)冊答案