【題目】如圖,在三棱柱中,底面,,,.
(1)證明;
(2)求異面直線和所成角的余弦值;
(3)求二面角的平面角的余弦值.
【答案】(1)見解析(2);(3)
【解析】
試題(1)由底面,得;再在三角形中解得,由線面垂直判定定理得,即得;(2)利用空間向量求線線角,首先根據(jù)條件建立直角坐標系,設(shè)立各點坐標,得異面直線和 方向向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)向量夾角與線線角關(guān)系得結(jié)果(3) 利用空間向量求二面角,首先根據(jù)條件建立直角坐標系,設(shè)立各點坐標,根據(jù)方程組解得平面法向量,根據(jù)向量數(shù)量積求兩法向量夾角,最后根據(jù)向量夾角與二面角關(guān)系得結(jié)果
試題解析:解(1)在三棱柱中,∵,∴
在中,,,,由正弦定理得,
∴,即。且,為平面內(nèi)兩條相交直線,
∴,又,∴
(2)如圖,建立空間直角坐標系,則,,,,,
∴,,∴,即異面直線和所成角的余弦值為
(3)可取為平面的法向量,設(shè)平面的法向量為,則,又∵,,∴,不妨取,則,因此有
∴二面角的平面角的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,垂直于梯形所在的平面,為的中點,,四邊形為矩形,線段交于點.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在線段上是否存在一點,使得與平面所成角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的右焦點為,點分別是橢圓的上、下頂點,點是直線上的一個動點(與軸的交點除外),直線交橢圓于另一個點.
(1)當直線經(jīng)過橢圓的右焦點時,求的面積;
(2)①記直線的斜率分別為,求證:為定值;
②求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】教育學家分析發(fā)現(xiàn)加強語文閱讀理解訓(xùn)練與提高數(shù)學應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同類班級進行試驗,其中甲班加強閱讀理解訓(xùn)練,乙班常規(guī)教學無額外訓(xùn)練,一段時間后進行數(shù)學應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | |||
乙班 | |||
總計 |
(1)能否據(jù)此判斷有把握認為加強語文閱讀訓(xùn)練與提高數(shù)學應(yīng)用題得分率有關(guān)?
(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學應(yīng)用題所用的時間在分鐘,小剛正確解答一道數(shù)學應(yīng)用題所用的時間在分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學應(yīng)用題,求小剛比小明先正確解答完的概率;
(3)現(xiàn)從乙班成績優(yōu)秀的名同學中任意抽取兩人,并對他們的答題情況進行全程研究,記兩人中被抽到的人數(shù)為,求的分布列及數(shù)學期望.
附表及公式:
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知偶函數(shù),當時,,當時,.關(guān)于偶函數(shù)的圖象和直線的個命題如下:
①當時,存在直線與圖象恰有個公共點;
②若對于,直線與圖象的公共點不超過個,則;
③,,使得直線與圖象交于個點,且相鄰點之間的距離相等.
其中正確命題的序號是( ).
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com