精英家教網(wǎng)如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線(xiàn)段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,圓O的直徑為9.
(1)求證:平面ABCD⊥平面ADE;
(2)求二面角D-BC-E的平面角的正切值.
分析:(1)欲證平面ABCD⊥平面ADE,根據(jù)面面垂直的判定定理可知在平面ABCD內(nèi)一直線(xiàn)與平面ADE垂直,易證CD⊥平面ADE,從而得到結(jié)論;
(2)過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,作FG∥AB交BC于點(diǎn)G,連接GE,根據(jù)二面角平面角的定義可知∠FGE是二面角D-BC-E的平面角,在Rt△EFG中,求出此角的正切值即可.
解答:(1)證明:∵AE垂直于圓O所在平面,CD在圓O所在平面上,
∴AE⊥CD.
在正方形ABCD中,CD⊥AD,
∵AD∩AE=A,∴CD⊥平面ADE.
∵CD?平面ABCD,
∴平面ABCD⊥平面ADE.

(2)∵CD⊥平面ADE,DE?平面ADE,
∴CD⊥DE.
∴CE為圓O的直徑,即CE=9.
設(shè)正方形ABCD的邊長(zhǎng)為a,
在Rt△CDE中,DE2=CE2-CD2=81-a2
在Rt△ADE中,DE2=AD2-AE2=a2-9,
由81-a2=a2-9,解得,a=3
5

DE=
AD2-AE2
=6

過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,作FG∥AB交BC于點(diǎn)G,連接GE,
精英家教網(wǎng)由于AB⊥平面ADE,EF?平面ADE,
∴EF⊥AB.
∵AD∩AB=A,
∴EF⊥平面ABCD.
∵BC?平面ABCD,
∴BC⊥EF.
∵BC⊥FG,EF∩FG=F,
∴BC⊥平面EFG.
∵EG?平面EFG,
∴BC⊥EG.
∴∠FGE是二面角D-BC-E的平面角.
在Rt△ADE中,AD=3
5
,AE=3,DE=6,
∵AD•EF=AE•DE,
EF=
AE•DE
AD
=
3×6
3
5
=
6
5
5

在Rt△EFG中,FG=AB=3
5
,
tan∠EGF=
EF
FG
=
2
5

故二面角D-BC-E的平面角的正切值為
2
5
點(diǎn)評(píng):本小題主要考查空間線(xiàn)面關(guān)系、空間向量及坐標(biāo)運(yùn)算等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、如圖把正方形ABCD沿對(duì)角線(xiàn)BD折成直二面角,對(duì)于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號(hào)為
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD、ABEF的邊長(zhǎng)都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=a(0<a<
2
),則MN的長(zhǎng)的最小值為 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線(xiàn)段BE上存在點(diǎn)M,使得直線(xiàn)AM與平面EAD所成角的正弦值為
6
3
,試確定點(diǎn)M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線(xiàn)EC與直線(xiàn)AD所成的角的余弦值為
2
4
2
4

查看答案和解析>>

同步練習(xí)冊(cè)答案