【題目】如圖,三棱臺(tái)中,

1)證明:;

2)若,求二面角的余弦值.

【答案】1)詳見解析;(2.

【解析】

1)過于點(diǎn),連接,易證得,進(jìn)而得到,得到,即,由線面垂直的判定定理得到平面,進(jìn)而得到

2)根據(jù)題意,進(jìn)一步得到,建立如圖空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量和平面的一個(gè)法向量,利用公式求得的值,進(jìn)而得到二面角的余弦值.

1)過于點(diǎn),連接,

因?yàn)?/span>,所以,

所以,所以,

所以,即,

因?yàn)?/span>,所以平面,

又因?yàn)?/span>平面,所以

2)因?yàn)?/span>,

所以,所以

所以,因?yàn)?/span>

所以,所以

如圖,以為原點(diǎn),以的方向?yàn)?/span>軸,軸,軸的正方向建立空間直角坐標(biāo)系,

易知,所以,

所以

設(shè)是平面的一個(gè)法向量,

,

易知平面的一個(gè)法向量,

,

因?yàn)槎娼?/span>為銳角,

所以二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,底面,,、、分別是棱、的中點(diǎn),對(duì)于平面截四棱錐所得的截面多邊形,有以下三個(gè)結(jié)論:

①截面的面積等于;

②截面是一個(gè)五邊形;

③截面只與四棱錐四條側(cè)棱中的三條相交.

其中,所有正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗(yàn)方式是檢驗(yàn)血液樣本相關(guān)指標(biāo)是否為陽(yáng)性,對(duì)于份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需檢驗(yàn)次.二是混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起,若檢驗(yàn)結(jié)果為陰性,那么這份血液全為陰性,因而檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪些為陽(yáng)性,就需要對(duì)它們?cè)僦鸱輽z驗(yàn),此時(shí)份血液檢驗(yàn)的次數(shù)總共為次.某定點(diǎn)醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗(yàn)方案:方案一,逐個(gè)檢驗(yàn);方案二,平均分成兩組檢驗(yàn);方案三,四個(gè)樣本混在一起檢驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陰性的概率為

(Ⅰ)求把2份血液樣本混合檢驗(yàn)結(jié)果為陽(yáng)性的概率;

(Ⅱ)若檢驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個(gè)最“優(yōu)”?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程:

(Ⅱ)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐ABCD中,點(diǎn)EBD上,EAEBECEDBDCD,△ACD為正三角形,點(diǎn)M,N分別在AECD上運(yùn)動(dòng)(不含端點(diǎn)),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時(shí),三棱錐ABCD的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)為曲線上的點(diǎn),,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若函數(shù)處的切線平行于軸,是否存在整數(shù),使不等式時(shí)恒成立?若存在,求出的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對(duì)角線ACBD的交點(diǎn),AB=2,∠BAD=60°,MPD的中點(diǎn).

(Ⅰ)求證:OM∥平面PAB

(Ⅱ)平面PBD⊥平面PAC;

(Ⅲ)當(dāng)三棱錐CPBD的體積等于 時(shí),求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案