6.等差數(shù)列{an}的公差為d,關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],則使數(shù)列{an}的前n項和Sn最大的正整數(shù)n的值是( 。
A.4B.5C.6D.7

分析 關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],可得:0,9分別是一元二次方程dx2+2a1x≥0的兩個實數(shù)根,且d<0.可得-$\frac{2{a}_{1}}u62m2ey$=9,${a}_{1}=-\frac{9d}{2}$.于是an=$(n-\frac{11}{2})$d,即可判斷出結(jié)論.

解答 解:∵關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],
∴0,9分別是一元二次方程dx2+2a1x≥0的兩個實數(shù)根,且d<0.
∴-$\frac{2{a}_{1}}2g6w4oq$=9,可得:2a1+9d=0,
∴${a}_{1}=-\frac{9d}{2}$.
∴an=a1+(n-1)d=$(n-\frac{11}{2})$d,
可得:a5=-$\frac{1}{2}d$>0,${a}_{6}=\frac{1}{2}d$<0..
∴使數(shù)列{an}的前n項和Sn最大的正整數(shù)n的值是5.
故選:B.

點評 本題考查了等差數(shù)列的通項公式、一元二次方程及其一元二次不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x>0,則y=3-2x-$\frac{1}{x}$的最大值為( 。
A.3B.3-3$\sqrt{2}$C.3-2$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等差數(shù)列{an}中,a1=20,若僅當n=8時,數(shù)列{an}的前n項和Sn取得最大值,則該等差數(shù)列公差d的取值范圍為(-$\frac{20}{7}$,-$\frac{5}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l1:ax+y+1=0(a>0)與直線l2:x+(b-4)y+2=0(b>0)垂直,則a2+b2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.通過觀察,下列數(shù)列哪些收斂?哪些發(fā)散?并求收斂數(shù)列的極限;
(1){$\frac{(-1)^{n}}{n+1}$};
(2){(-1)n$\frac{n}{n+1}$};
(3){($\frac{3}{4}$)n+1};
(4){2n};
(5){($\frac{a}{a+1}$)n}(a>0為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P為橢圓上與長軸端點不重合的一點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,過F2作∠F1PF2外角平分線的垂線,垂足為Q,若|OQ|=2b,橢圓的離心率為e,則$\frac{{{a^2}+{e^2}}}{2b}$的最小值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足約束條件$\left\{\begin{array}{l}{3x-y≥0}\\{x+y-4≤0}\\{y≥\frac{1}{2}{x}^{2}}\end{array}\right.$,則z=y-x的取值范圍為( 。
A.[-2,2]B.[-$\frac{1}{2}$,2]C.[-1,2]D.[-$\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一幾何體的三視圖如圖所示
(1)畫出該幾何體的直觀圖或表述該幾何體的幾何特征;
(2)求該幾何體的表面積;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將函數(shù)f(x)=$\sqrt{3}$cos(πx)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把圖象上所有的點向右平移1個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)區(qū)間是(  )
A.[4k+1,4k+3](k∈Z)B.[2k+1,2k+3](k∈Z)C.[2k+1,2k+2](k∈Z)D.[2k-1,2k+2](k∈Z)

查看答案和解析>>

同步練習(xí)冊答案