【題目】設(shè)函數(shù)由方程確定,下列結(jié)論正確的是________(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)

上的單調(diào)遞減函數(shù);

對(duì)于任意,恒成立;

對(duì)于任意,關(guān)于的方程都有解;

存在反函數(shù),且對(duì)任意,總有成立.

【答案】①②③④

【解析】

首先化簡(jiǎn)所給的方程,畫出其對(duì)應(yīng)的圖像,然后逐一考查所給的結(jié)論是否正確即可.

方程等價(jià)于:

,

繪制其對(duì)應(yīng)的曲線如圖所示:

據(jù)此考查所給的性質(zhì):

由函數(shù)圖像可知上的單調(diào)遞減函數(shù);

注意到兩段雙曲線的漸近線均為,

故對(duì)于任意,恒成立;

很明顯函數(shù)的值域?yàn)?/span>R,故對(duì)于任意,關(guān)于的方程都有解;

很明顯單調(diào)遞減函數(shù)的定義域、值域均為,且函數(shù)關(guān)于直線對(duì)稱,

存在反函數(shù),且對(duì)任意,總有成立.

綜上可得,結(jié)論正確的是①②③④.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對(duì)應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對(duì)于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,若,則稱是“緊密數(shù)列”.

1)若數(shù)列是“緊密數(shù)列”,且,,,求的取值范圍;

2)若為等差數(shù)列,首項(xiàng),公差,且,判斷是否為“緊密數(shù)列”,并說(shuō)明理由;

3)設(shè)數(shù)列是公比為的等比數(shù)列,若數(shù)列都是“緊密數(shù)列”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)當(dāng)a0時(shí),求fx)的極值;

2)當(dāng)a0時(shí),討論fx)的單調(diào)性;

3)若對(duì)任意的a∈2, 3),x1, x2∈[1, 3],恒有(mln3a2ln3|fx1)-fx2|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與圓相切,圓心的坐標(biāo)為

1)求圓的方程;

2)設(shè)直線與圓沒(méi)有公共點(diǎn),求的取值范圍;

3)設(shè)直線與圓交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),且時(shí),有,,則不等式的解集為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知雙曲線分別為的左,右頂點(diǎn).

(1)以為圓心的圓與恰有三個(gè)不同的公共點(diǎn),寫出此圓的方程;

(2)直線過(guò)點(diǎn),與在第一象限有公共點(diǎn),線段的垂直平分線過(guò)點(diǎn),求直線的方程;

(3)上是否存在異于點(diǎn),使成立,若存在,求出所有的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知常數(shù),數(shù)列滿足,.

(1),,求的值;

(2)(1)的條件下,求數(shù)列的前項(xiàng)和

(3)若數(shù)列中存在三項(xiàng),()依次成等差數(shù)列,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,.

1)若,請(qǐng)寫出的值;

2)求證:數(shù)列是等差數(shù)列數(shù)列是等差數(shù)列的充要條件;

3)若對(duì)任意,有,且,請(qǐng)問(wèn):是否存在,使得對(duì)于任意不小于的正整數(shù),有成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案