【題目】在平面直角坐標(biāo)系中,已知雙曲線分別為的左,右頂點(diǎn).
(1)以為圓心的圓與恰有三個不同的公共點(diǎn),寫出此圓的方程;
(2)直線過點(diǎn),與在第一象限有公共點(diǎn),線段的垂直平分線過點(diǎn),求直線的方程;
(3)上是否存在異于點(diǎn),使成立,若存在,求出所有的坐標(biāo),若不存在說明理由.
【答案】(1);(2) ;(3)不存在,理由見解析
【解析】
(1)求雙曲線的左右頂點(diǎn),可得以A為圓心的圓經(jīng)過B,求得半徑,可得所求圓的方程(2)設(shè)直線l的方程為,(),聯(lián)立雙曲線方程,運(yùn)用韋達(dá)定理,可得P的坐標(biāo),由中點(diǎn)坐標(biāo)公式可得AP的中點(diǎn)坐標(biāo),再由兩直線垂直的條件,解方程可得,進(jìn)而得到所求直線方程(3)假設(shè)l上存在異于A,B點(diǎn)M,N,使成立,設(shè),運(yùn)用向量的坐標(biāo)表示和點(diǎn)滿足雙曲線方程,解方程可得M的坐標(biāo),即可判斷是否存在.
(1)因?yàn)殡p曲線為
所以左右頂點(diǎn),
由題意可得以A為圓心的圓經(jīng)過B,
則圓的半徑,圓的方程為.
(2)直線過點(diǎn),且直線的斜率存在,
設(shè)直線的方程為,
聯(lián)立雙曲線方程消去y,可得,
可得,可得,
可得的中點(diǎn)坐標(biāo)為,
由題意可得,即為,解得(負(fù)的舍去),
則直線的方程為;
(3)設(shè),
因?yàn)?/span>,
所以
把代入雙曲線方程得:
,與點(diǎn)重合,故不存在.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2017年度進(jìn)行一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費(fèi)t萬元間滿足.已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費(fèi)用,若將每件飲料的售價定為其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費(fèi)投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租車公司給出的財(cái)務(wù)報(bào)表如下:
年度 項(xiàng)目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接單量(單) | 14463272 | 40125125 | 60331996 |
油費(fèi)(元) | 214301962 | 581305364 | 653214963 |
平均每單油費(fèi)(元) | 14.82 | 14.49 | |
平均每單里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投資者在研究上述報(bào)表時,發(fā)現(xiàn)租車公司有空駛情況,并給出空駛率的計(jì)算公式為.
(1)分別計(jì)算2014,2015年該公司的空駛率的值(精確到0.01%);
(2)2016年該公司加強(qiáng)了流程管理,利用租車軟件,降低了空駛率并提高了平均每單里程,核算截止到11月30日,空駛率在2015年的基礎(chǔ)上降低了20個百分點(diǎn),問2016年前11個月的平均每單油費(fèi)和平均每單里程分別為多少?(分別精確到0.01元和0.01公里).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程確定,下列結(jié)論正確的是________(請將你認(rèn)為正確的序號都填上)
① 是上的單調(diào)遞減函數(shù);
② 對于任意,恒成立;
③ 對于任意,關(guān)于的方程都有解;
④ 存在反函數(shù),且對任意,總有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中是自然對數(shù)的底數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測得,,,,則,兩點(diǎn)的距離為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為,長軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,求證:由點(diǎn) 構(gòu)成的曲線關(guān)于直線對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,空間直角坐標(biāo)系中,四棱錐的底面是邊長為的正方形,且底面在平面內(nèi),點(diǎn)在軸正半軸上,平面,側(cè)棱與底面所成角為45°;
(1)若是頂點(diǎn)在原點(diǎn),且過、兩點(diǎn)的拋物線上的動點(diǎn),試給出與滿足的關(guān)系式;
(2)若是棱上的一個定點(diǎn),它到平面的距離為(),寫出、兩點(diǎn)之間的距離,并求的最小值;
(3)是否存在一個實(shí)數(shù)(),使得當(dāng)取得最小值時,異面直線與互相垂直?請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com