17.直線在y軸上的截距是-3,且傾斜角為135°,則直線的方程為x+y+3=0.(寫(xiě)成一般式)

分析 利用斜截式即可得出.

解答 解:∵直線的傾斜角為135°,∴斜率k=tan135°=-1.
又直線在y軸上的截距是-3,可得斜截式為:y=-x-3,化為x+y+3=0.
故答案為:x+y+3=0.

點(diǎn)評(píng) 本題考查了直線的斜截式與一般式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足數(shù)列{2an}是等比數(shù)列,若a4+a1009+a2014=$\frac{3}{2}$,則S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.“ab<0”是“a>0且b<0”的( 。
A.必要不充分條件B.充要條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E的中心在坐標(biāo)原點(diǎn),且拋物線x2=-4$\sqrt{5}$y的焦點(diǎn)是橢圓E的一個(gè)焦點(diǎn),以橢圓E的長(zhǎng)軸的兩個(gè)端點(diǎn)及短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形的面積為6.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若斜率為$\frac{3}{2}$的直線l與橢圓E交于不同的兩點(diǎn)A、B,又點(diǎn)C($\frac{4}{3}$,2),求△ABC面積最大時(shí)對(duì)應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)i為虛數(shù)單位,若復(fù)數(shù)z1=(3-i)(2-i)與復(fù)數(shù)z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在同一個(gè)象限,則z2可能為( 。
A.2+iB.-3+4iC.-1-7iD.1+$\frac{1}{i}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.${(\frac{2}{{\sqrt{x}}}-x)^9}$展開(kāi)式中除常數(shù)項(xiàng)外的其余項(xiàng)的系數(shù)之和為( 。
A.5377B.-5377C.5375D.-5375

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.正方形ABCD的邊長(zhǎng)為1,把三角形ABD沿對(duì)角線BD翻折,使得面ABD⊥面BCD后,有如下四個(gè)結(jié)論:
(1)AC⊥BD;(2)△ACD是等邊三角形;(3)四面體A-BCD的表面積為$1+\frac{{\sqrt{3}}}{2}$.(4)四面體A-BCD的內(nèi)切球半徑是$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$.
則正確結(jié)論的序號(hào)為(1)(2)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,則M∩N=( 。
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=2sin2x+mcosx+1,
(1)若m=1,求f(x)的最大值和最小值;
(2)若m∈R,求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案