【題目】如圖,四邊形是梯形.四邊形是矩形.且平面平面,,,,是線段上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面與平面所成銳二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(Ⅰ)當(dāng)點(diǎn)是中點(diǎn)時(shí),連結(jié),交于點(diǎn),連結(jié),根據(jù)中位線可知,即平面;(Ⅱ)以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,分別求兩個(gè)平面的法向量,求.
試題解析:(Ⅰ)當(dāng)是線段的中點(diǎn)時(shí),平面,
證明如下:
連接,交于,連接,
由于、分別是、的中點(diǎn),所以,
由于平面,又不包含于平面,
∴平面.
(Ⅱ)方法一:過(guò)點(diǎn)作平面與平面的交線,
∵平面,∴,
過(guò)點(diǎn)作于,
∵平面平面,,
∴平面,∴平面平面,
∴平面,
過(guò)作于,連接,則直線平面,∴,
設(shè),則,,,則,
∴,
∴所求二面角的余弦值為.
方法二:
∵平面平面,,
∴平面,可知、、兩兩垂直,
分別以、、的方向?yàn)?/span>,,軸,
建立空間直角坐標(biāo)系.
設(shè),則,,,,
設(shè)平面的法向量,
則,∴,
令,得平面的一個(gè)法向量,
取平面的法向量,
由,
∴平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)判斷f(x)的單調(diào)性,說(shuō)明理由.
(2)解方程f(2x)=f﹣1(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批底部周長(zhǎng)屬于[80,130](單位:cm)的樹(shù)木進(jìn)行研究,從中隨機(jī)抽出200株樹(shù)木并測(cè)出其底部周長(zhǎng),得到頻率分布直方圖如圖所示,由此估計(jì),這批樹(shù)木的底部周長(zhǎng)的眾數(shù)是cm,中位數(shù)是cm,平均數(shù)是cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,角,,所對(duì)的邊分別是,,,且點(diǎn),,動(dòng)點(diǎn)滿足(為常數(shù)且),動(dòng)點(diǎn)的軌跡為曲線.
(Ⅰ)試求曲線的方程;
(Ⅱ)當(dāng)時(shí),過(guò)定點(diǎn)的直線與曲線交于,兩點(diǎn),是曲線上不同于,的動(dòng)點(diǎn),試求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A與圓: 相切,且與圓: 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的平行線交曲線于, 兩個(gè)不同的點(diǎn).
(Ⅰ)求曲線的方程;
(Ⅱ)試探究和的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說(shuō)明理由;
(Ⅲ)記的面積為, 的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的短軸長(zhǎng)為,右焦點(diǎn)為,點(diǎn)是橢圓上異于左、右頂點(diǎn)的一點(diǎn).
(1)求橢圓的方程;
(2)若直線與直線交于點(diǎn),線段的中點(diǎn)為,證明:點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com