【題目】(本小題滿分12分)某旅行社設(shè)計了一個組織旅游團(tuán)包飛機(jī)去廣州旅游的方案,其中旅行杜的包機(jī)費(fèi)用為元,旅游團(tuán)中最多能有人,并且旅游團(tuán)中的人數(shù) (單位:個)與每個人交給旅行社的費(fèi)用(單位:元)的關(guān)系如下:.
(1)將旅行社的利潤(單位:元)表示成旅游團(tuán)中的人數(shù)的函數(shù)(注:利潤=收取的費(fèi)用一包機(jī)費(fèi)用);
(2)當(dāng)旅游團(tuán)有多少人時,旅行社的利潤最大?并求出最大利潤.
【答案】(1);(2)當(dāng)旅游團(tuán)的人數(shù)為人時,旅行社的利潤最大,最大利潤為元.
【解析】
試題分析:(1)根據(jù)題意,分求得當(dāng)和對應(yīng)的解析式,即可求解函數(shù)的解析式;(2)分別求出當(dāng)和時,函數(shù)的最值,通過比較,即可求解旅行社利潤的最大值.
試題解析:(1)當(dāng)時,;
當(dāng)時,,
所以.
(2)當(dāng)時,;
當(dāng)時, 取得最大值,.
當(dāng)時,,
當(dāng)時, 取得最大值.
所以當(dāng)旅游團(tuán)的人數(shù)為人時,旅行社的利潤最大,最大利潤為元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=2x3,g(x)=f(x+2),則g(x)等于( )
A.2x+1
B.2x-1
C.2x-3
D.2x+7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)
(1)當(dāng)時,求函數(shù)的定義域;
(2)若,請判定的奇偶性;
(3)是否存在實(shí)數(shù),使函數(shù)在遞增,并且最大值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形所在平面垂直于直角梯形所在平面,平面平面,且,且.
(1)設(shè)點(diǎn)為棱中點(diǎn),在面內(nèi)是否存在點(diǎn),使得平面?若存在,請證明,若不存在,說明理由;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在凸四邊形中,為定點(diǎn),,為動點(diǎn),滿足.
(1)寫出與的關(guān)系式;
(2)設(shè)△BCD和△ABD的面積分別為和,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上,且PM=3MC,求三棱錐P﹣QBM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an(n∈N+)
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“x2-3x+2<0”是“-1<x<2”成立的______條件(在“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”中選一個填寫).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合滿足,則稱為集合的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)時, 與是集合的同一種分拆。若集合有三個元素,則集合的不同分拆種數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com