y=f(x)在R上連續(xù),在點(diǎn)x=x0處f′(x)=0,在點(diǎn)x=x1處f′(x)不存在,則下述命題中正確的是

A.x=x0及x=x1一定都是極值點(diǎn)                 

B.只有x=x0是極值點(diǎn)

C.x=x0與x=x1可能都不是極值點(diǎn)               

D.x=x0與x=x1中至少有一個(gè)是極值點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于f(x)=4sin(2x+
π
3
)(x∈R)
,有下列命題:
①y=f(x)圖象關(guān)于直線x=-
12
對(duì)稱
②y=f(x)圖象關(guān)于(-
π
6
,0)對(duì)稱;
③y=f(x)圖象上相鄰最高點(diǎn)與最低點(diǎn)的連線與x軸的交點(diǎn)一定在y=f(x)的圖象上.
其中正確命題的序號(hào)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)  若函數(shù)y=f(x)的圖象在點(diǎn)(1,2)處的切線的斜率等于1,求函數(shù)y=f(x)的解析式;
(Ⅱ)若x∈[0,1],則函數(shù)y=f(x)的圖象上的任意一點(diǎn)的切線的斜率為k,試討論|k|≤1成立的充要條件.
(Ⅲ)若函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)的連線的斜率小于1,求證:-
3
<a<
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(I)當(dāng)a>0時(shí),求函數(shù)y=f(x)的極值;
(II)若函數(shù)y=f(x)的圖象上任意不同的兩點(diǎn)連線的斜率都小于2,求證:-
6
<a<
6
;
(III)對(duì)任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
3
是|k|≤1成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)y=f (x)滿足f ( x+2 )=-f (x)對(duì)所有實(shí)數(shù)x都成立,且在[-2,0]上單調(diào)遞增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),則a,b,c的由大到小順序是(用“>”連 結(jié))
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)=-x3+ax2+b(x∈R)的圖象是曲線C.

(1)當(dāng)x=2時(shí),函數(shù)f(x)取得極值0,求ab的值;

(2)在(1)的條件下,求過(guò)點(diǎn)P(0,-4)且與曲線C相切的切線方程;

(3)若曲線C上任意兩點(diǎn)的連線的斜率都小于1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案