13.下列命題正確的個數(shù)是( 。
①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow 0$;   
②$\overrightarrow{OB}$-$\overrightarrow{OA}$=$\overrightarrow{AP}$+$\overrightarrow{PB}$;  
③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;  
④0•$\overrightarrow{AB}$=0.
A.1B.2C.3D.4

分析 根據(jù)向量的加減的幾何意義即可判斷①②③,根據(jù)向量的數(shù)乘運算即可判斷④

解答 解:①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow 0$,正確
②$\overrightarrow{OB}$-$\overrightarrow{OA}$=$\overrightarrow{AB}$=$\overrightarrow{AP}$+$\overrightarrow{PB}$; 正確
③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{CB}$,故③不正確  
④0•$\overrightarrow{AB}$=$\overrightarrow{0}$,故④不正確,
故正確的個數(shù)為2個,
故選:B.

點評 本題考查了向量的加減的幾何意義和向量的數(shù)乘運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是邊長為1的正方體,有一蜘蛛潛伏在A處,B處有一小蟲被蜘蛛網(wǎng)粘住,請問蜘蛛從A到B正方體表面爬行的最短路程為( 。
A.3B.$\sqrt{2}$+1C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=tan$\frac{1}{2}$x的最小正周期為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點和頂點的坐標(biāo);
(2)求拋物線 y2-6x=0的焦點坐標(biāo),準(zhǔn)線方程和對稱軸;
(3)求焦點在x軸上,兩頂點間的距離是8,e=$\frac{5}{4}$的 雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx+ax2,其中a為實常數(shù).
(1)討論函數(shù)f(x)的極值點個數(shù);
(2)若函數(shù)f(x)有兩個零點,求a的取值范圍;
(3)已知a>0,對任意定義域內(nèi)的兩個不等實數(shù)x1,x2都有|f(x1)-f(x2)|>|x1-x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法中錯誤的是(  )
A.命題“若x=1,則x2+x-2=0”的否命題是假命題
B.空間任意一點O與不共線的三點A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-2$\overrightarrow{OB}$-$\overrightarrow{OC}$,則P,A,B,C四點共面
C.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
D.過點(0,2)與拋物線y2=8x只有一個公共點的直線有3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,PD⊥平面ABCD,底面是邊長是1的正方形,側(cè)棱PA與底面成45°的角,M,N分別是AB,PC的中點;
(1)求四棱錐P-ABCD的體積;
(2)求MN與面PCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3+(1-a)x2-4ax+a,其中a為常數(shù).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[0,3]上的最大值為3,求實數(shù)a的取值集合;
(3)試討論函數(shù)y=f′(x)的圖象與函數(shù)y=$\frac{1}{x}$-(a+1)2的圖象的公切線條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范圍;
(3)若m>n>0,試比較$\frac{f(m)-f(n)}{m-n}$與$\frac{2n}{{{m^2}+{n^2}}}$的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案