某幾何體的三視圖如圖所示,則該幾何體的體積為
 

考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是三棱錐,結(jié)合圖形判斷幾何體的結(jié)構(gòu)特征及相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱錐的體積公式計(jì)算.
解答: 解:由三視圖知:幾何體是三棱錐,如圖:
其中SA⊥平面ABC,BA⊥AC,SA=
2
,AB=1,SC=
6
,
∴AC=2,
∴幾何體的體積V=
1
3
×
1
2
×1×2×
2
=
2
3

故答案為:
2
3

點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的幾何特征及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)是拋物線y2=2px(p>0)上的不同三點(diǎn),若△ABC的重心是拋物線的焦點(diǎn)F,則y1y2+y2y3+y1y3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)互不相等的平面向量組
ai
(i∈N*)滿足條件:①|(zhì)
ai
|=1;②
ai
ai+1
=0.若記
Sn
=
a1
+
a2
+…+
an
(n≥2),則|
Sn
|的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2x-xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,則實(shí)數(shù)x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①△ABC中,A>B是sinA>sinB成立的充要條件;
②利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1>0”發(fā)生的概率為
1
3

③已知{Sn}是等差數(shù)列{an}的前n項(xiàng)和,若S7>S5,則S9>S3;
④若函數(shù)y=f(x-
3
2
)為R上的奇函數(shù),則函數(shù)y=f(x)的圖象一定關(guān)于點(diǎn)F(
3
2
,0)成中心對(duì)稱(chēng).
⑤函數(shù)f(x)=cos3x+sin2x-cosx(x∈R)有最大值為2,有最小值為0.
其中所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某班甲乙兩同學(xué)高三各次聯(lián)考的數(shù)學(xué)成績(jī)的莖葉圖.根據(jù)統(tǒng)計(jì)學(xué)知識(shí)判斷甲、乙兩同學(xué)中發(fā)揮較穩(wěn)定的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f′(x)是函數(shù)f(x)=
x
1-x
的導(dǎo)數(shù),則
f′(2)
f(2)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|y=
x-1
,x∈R},B={y|y=2x+1,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜三角形ABC中,命題甲:A=
π
6
,命題乙:cosB≠
1
2
,則甲是乙的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案