分析 (1)由DB=2DC得s△ABC=3s△ADC,s${\;}_{△ABC}=4\sqrt{2}$ 即s${\;}_{△ABC}=\frac{1}{2}AB•BC•sin∠ABC$,BC=6,在△ABC中,由余弦定理得AC2=AB2+BC2-2AB•BCcos∠ABC即可;
(2)在△ABD中,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,得AD=$\frac{8\sqrt{6}}{9}$,sin$∠BAD=sin(\frac{2π}{3}-B)=\frac{\sqrt{3}+2\sqrt{2}}{6}$即可求解.
解答 解:(1)∵DB=2DC,∴s△ABD=2s△ADC,s△ABC=3s△ADC,
又s${\;}_{△ADC}=\frac{4}{3}\sqrt{2}$,∴s${\;}_{△ABC}=4\sqrt{2}$,…(3分)
∵s${\;}_{△ABC}=\frac{1}{2}AB•BC•sin∠ABC$,∴BC=6,
在△ABC中,由余弦定理得AC2=AB2+BC2-2AB•BCcos∠ABC.
∴AC=4$\sqrt{2}$.…(5分)
(2)在三角形中,∵cosB=$\frac{1}{3}$,∴sinB=$\frac{2\sqrt{2}}{3}$.…(6分)
在△ABD中,由正弦定理得$\frac{AB}{sin∠ADB}=\frac{AD}{sinB}$,
又AB=2,$∠ADB=\frac{π}{3}$,sinB=$\frac{2\sqrt{2}}{3}$.∴AD=$\frac{8\sqrt{6}}{9}$…(9分)
$∠BAD=\frac{2π}{3}-B$,sin$∠BAD=sin(\frac{2π}{3}-B)=\frac{\sqrt{3}+2\sqrt{2}}{6}$
∴${s}_{△ADB}=\frac{1}{2}AB•AD•sin∠BAD$=$\frac{16\sqrt{3}+12\sqrt{2}}{27}$…(12分)
點(diǎn)評(píng) 本題考查了正余弦定理的應(yīng)用,考查了計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 187×16 | B. | 1112 | C. | 45×42 | D. | 2304×21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+3i | B. | 4-3i | C. | 3+4i | D. | 3-4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ③④ | D. | ②⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $1+\frac{1}{2}$ | ||
C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | $1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^{n_0}}-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=ln(x+1) | B. | y=$\frac{1}{2}$x2+cosx | C. | y=x4-3x2 | D. | y=3x+sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com