18.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為( 。
A.2B.5$\sqrt{2}$C.2$\sqrt{5}$D.5

分析 利用兩個向量的夾角公式求得$\overrightarrow{a}$與$\overrightarrow$的夾角θ的余弦值,根據(jù)一個向量在另一個向量上的投影的定義,求得 $\overrightarrow{a}$在$\overrightarrow$方向上的投影為|$\overrightarrow{a}$|•cosθ 的值.

解答 解:設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{6+4}{\sqrt{9+16}•\sqrt{4+1}}$=$\frac{2\sqrt{5}}{5}$,
∴$\overrightarrow{a}$在$\overrightarrow$方向上的投影為|$\overrightarrow{a}$|•cosθ=5•$\frac{2\sqrt{5}}{5}$=2$\sqrt{5}$,
故選:C.

點評 本題主要考查兩個向量的夾角公式,一個向量在另一個向量上的投影的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓C:x2+y2=1,過第一象限內(nèi)一點P(a,b)作圓C的兩條切線,且點分別為A、B,若∠APB=60°,O為坐標(biāo)原點,則OP的長為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z滿足(1+i)•z=1-2i3(i為虛數(shù)單位),則復(fù)數(shù)z對應(yīng)的點位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè) f:A→B是從A到B的映射,下列敘述正確的有( 。
①A中每一元素在B中有唯一象   ②B中每一元素與A中唯一元素對應(yīng)
③B中元素可以在A中無原象        ④B是A中所有元素的象的集合
⑤A中元素可以在B中無象.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$.
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(2)求該函數(shù)在區(qū)間[1,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知M={x|x(x-1)<0},N={x|x>0},則M∪N等于(  )
A.(0,1)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=$\frac{\sqrt{3}}{2}$,那么原△ABC中∠ABC的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=ax3+bx+7(其中a,b為常數(shù)),若f(-7)=-17,則f(7)的值為(  )
A.31B.17C.-17D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過點P(1,3)的直線分別與兩坐標(biāo)軸交于A、B兩點,若P為AB的中點,則直線的方程是3x+y-6=0.

查看答案和解析>>

同步練習(xí)冊答案