(2012•上海)設(shè)an=
1
n
sin
25
,Sn=a1+a2+…+an,在S1,S2,…S100中,正數(shù)的個(gè)數(shù)是( 。
分析:由于f(n)=sin
25
的周期T=50,由正弦函數(shù)性質(zhì)可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=
1
n
單調(diào)遞減,a25=0,a26…a50都為負(fù)數(shù),但是|a25|<a1,|a26|<a2,…,|a49|<a24,從而可判斷
解答:解:由于f(n)=sin
25
的周期T=50
由正弦函數(shù)性質(zhì)可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0
且sin
26π
25
=-sin
π
25
,sin
27π
25
=-sin 
25
…但是f(n)=
1
n
單調(diào)遞減
a26…a50都為負(fù)數(shù),但是|a25|<a1,|a26|<a2,…,|a49|<a24
∴S1,S2,…,S25中都為正,而s26,s27,…,s50都為正
同理S1,S2,…,s75都為正,S1,S2,…,s75,…,s100都為正,
故選D
點(diǎn)評(píng):本題主要考查了三角函數(shù)的周期的應(yīng)用,數(shù)列求和的應(yīng)用,解題的關(guān)鍵是正弦函數(shù)性質(zhì)的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海二模)設(shè)雙曲線(xiàn)
x2
4
-y2=1的右焦點(diǎn)為F,點(diǎn)P1、P2、…、Pn是其右上方一段(2≤x≤2
5
,y≥0)上的點(diǎn),線(xiàn)段|PkF|的長(zhǎng)度為ak,(k=1,2,3,…,n).若數(shù)列{an}成等差數(shù)列且公差d∈(
1
5
,
5
5
),則n最大取值為
14
14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)設(shè)10≤x1<x2<x3<x4≤104,x5=105,隨機(jī)變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機(jī)變量ξ2取值
x1+x2
2
、
x2+x3
2
、
x3+x4
2
、
x4+x5
2
、
x5+x1
2
的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海二模)已知x軸上的點(diǎn)A1,A2…,An滿(mǎn)足
.
AnAn+1
=
1
2
.
An-1An
(n≥2,n∈N*),其中A1(1,0),A2(5,0);點(diǎn)B1,B2,…Bn,…在射線(xiàn)y=x(x≥0)上,滿(mǎn)足|
.
OBn+1
|=|
.
OBn
|+2
2
 (n∈N*),其中B1(3,3).
(1)用n表示點(diǎn)An與Bn的坐標(biāo);
(2)設(shè)直線(xiàn)AnBn的斜率為kn,求
lim
n→∞
kn的值;
(3)求四邊形AnAn+1Bn+1Bn面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)設(shè)O為△ABC所在平面內(nèi)一點(diǎn).若實(shí)數(shù)x、y、z滿(mǎn)足x
OA
+y
OB
+z
OC
=0,(x2+y2+z2≠0),則“xyz=0”是“點(diǎn)O在△ABC的邊所在直線(xiàn)上”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案