15.已知數(shù)列{an}的通項(xiàng)公式為an=n-11,當(dāng)其前n項(xiàng)和Sn取得最小值時(shí),n等于10或11.

分析 由an=n-11≥0,得n≥11,由此能求出當(dāng)其前n項(xiàng)和Sn取得最小值時(shí)對(duì)應(yīng)的n的值.

解答 解:∵數(shù)列{an}的通項(xiàng)公式為an=n-11,
∴由an=n-11≥0,得n≥11,
a10=10-11=-1,a11=11-11=0,a12=12-11=1,
∴當(dāng)其前n項(xiàng)和Sn取得最小值時(shí),
n=11或n=10.
故答案為:10或11.

點(diǎn)評(píng) 本題考查數(shù)列的前n項(xiàng)和取最小值時(shí)對(duì)應(yīng)的項(xiàng)數(shù)n的求法,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和記為T(mén)n,an+1=2Tn+1(n≥1),a1=1;等差數(shù)列{bn}中,且{bn}的前n項(xiàng)和為Sn,b1=3,a3+S3=27.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足cn=$\frac{3}{_{n+1}lo{g}_{3}{a}_{n+1}}$,求{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}的首項(xiàng)a1=2,an+1=2an-1(n∈N*)
(Ⅰ)寫(xiě)出數(shù)列{an}的前5項(xiàng),并歸納猜想{an}的通項(xiàng)公式;
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中所猜想的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一個(gè)算法的步驟如下:
第一步:輸入正數(shù)m的值;
第二步:求出不超過(guò)m的最大整數(shù)x;
第三步:計(jì)算y=2x+x;
第四步:輸出y的值.
如果輸出y的值為20,則輸入的m值只可能是下列各數(shù)中的( 。
A.3.1B.4.2C.5.3D.6.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知a,b∈R,若a2+b2-ab=1,則ab的取值范圍是[$-\frac{1}{3}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在一個(gè)6×6的表格中放3顆完全相同的白棋和3顆完全相同的黑棋,若這6顆棋子不在同一行也不在同一列上,則不同的放法有( 。
A.14400種B.518400種C.720種D.20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知x,y滿(mǎn)足$\left\{\begin{array}{l}x-y-1≥0\\ x+y≥0\\ x≤3\end{array}\right.$,則(x-1)2+(y-1)2的取值范圍是(  )
A.[5,25]B.[1,25]C.$[{\frac{1}{2},20}]$D.$[{\frac{5}{2},20}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{an}是正項(xiàng)數(shù)列,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$=n2+n(n∈N*),則$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.2013年8月,考古學(xué)家在湖北省隨州市葉家山發(fā)現(xiàn)了大量的古墓,經(jīng)過(guò)對(duì)生物體內(nèi)碳14含量的測(cè)量,估計(jì)該古墓群應(yīng)該形成于公元前850年左右的西周時(shí)期,已知碳14的“半衰期”為5730年(即含量大約經(jīng)過(guò)5730年衰減為原來(lái)的一半),由此可知,所測(cè)生物體內(nèi)碳14的含量應(yīng)最接近于(  )
A.25%B.50%C.70%D.75%

查看答案和解析>>

同步練習(xí)冊(cè)答案