【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時間的情況,從全校學(xué)生中抽取人,統(tǒng)計他們平均每天在家的時間在家時間在小時以上的就認(rèn)為具有屬性,否則就認(rèn)為不具有屬性

具有屬性

不具有屬性

總計

男生

20

50

70

女生

10

40

50

總計

30

90

120

1請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷能否在犯錯誤的概率不超過

的前提下認(rèn)為是否具有屬性與性別有關(guān)?

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個人的樣本,其中男生和女生各多少人?

人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

【答案】1列聯(lián)表見解析,不能在犯錯誤的概率不超過的前提下認(rèn)為是否具有屬性與性別有關(guān);2.

【解析】

試題分析:1由給出的公式求得的值,與表中給出的臨界值比較可得結(jié)論;2根據(jù)分層抽樣的規(guī)則可判斷抽取的樣本中男生人,女生人,分別區(qū)別編號,寫出基本事件空間,從中找出至少有一名女生包含的基本事件數(shù),作比即可求得概率.

試題解析:1,

則在犯錯誤的概率不超過的前提下不能認(rèn)為是否具有屬性與性別有關(guān).

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個人的樣本,其中男生人,編號為,女生人,編號.

人中隨機(jī)選取人的基本事件有,

,共個.

選取的人至少有名女生的基本事件有,,,共個,所以選取的人至少有名女生的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為________ (填序號).

ACBD;②AC∥截面PQMN;③ACBD;④異面直線PMBD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如下圖示.

(Ⅰ)求直方圖中x的值;

(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);

(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng),求函數(shù)在區(qū)間上的最大值與最小值;

(2)若在上存在使得成立,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公司從某大學(xué)招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績?nèi)缜o葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔(dān)任助理工作。

(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?

(2)若從所有甲部門人選中隨機(jī)選人,用表示所選人員中能擔(dān)任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù)

(1)比較的大小,并說明理由.(提示:

(2)若,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用單位:萬元與隔熱層厚度單位:cm滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

1的值及的表達(dá)式;

2隔熱層修建多厚時,總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=,anbn+1+bn+1=nbn

分別求數(shù)列{an},{bn}的通項公式;

令cn= an bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點(diǎn).

(1)若分別是的中點(diǎn),求證:平面;

(2)求證:不論在何位置,四棱錐的體積都為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊答案