分析 化參數(shù)方程為普通方程,可知曲線C為焦點在y軸上的雙曲線,結(jié)合隱含條件求出半焦距,則焦點坐標可求.
解答 解:$\left\{\begin{array}{l}{x=tanθ①}\\{y=\frac{2}{cosθ}②}\end{array}\right.$,
由②得:$\frac{y}{2}$=secθ ③,
③2-②2得$\frac{{y}^{2}}{4}-{x}^{2}=1$.
∴a2=4,b2=1,$c=\sqrt{{a}^{2}+^{2}}=\sqrt{5}$.
∴焦點坐標為(0,-$\sqrt{5}$),(0,$\sqrt{5}$).
故答案為:(0,-$\sqrt{5}$),(0,$\sqrt{5}$).
點評 本題考查參數(shù)方程化普通方程,考查了雙曲線的簡單性質(zhì),是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$-1 | C. | $\sqrt{2}$ | D. | $\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com