1.平行四邊形ABCD中,已知AB=3+$\sqrt{3}$,BD=3$\sqrt{2}$,∠BDC=45°.求:
(1)AD的長;
(2)角A的大。

分析 (1)利用余弦定理直接求解AD的長;
(2)利用正弦定理直接求出角A的正弦函數(shù)值,然后求出A的值.

解答 解:(1)平行四邊形ABCD中,已知AB=3+$\sqrt{3}$,BD=3$\sqrt{2}$,∠BDC=45°,
可得,∠ABD=45°,
AD2=AB2+BD2-2AB•BDcos∠ABD=12+6$\sqrt{3}$+18-2(3+$\sqrt{3}$)(3$\sqrt{2}$)×$\frac{\sqrt{2}}{2}$=12.
AD=2$\sqrt{3}$.
(2)由正弦定理可知:$\frac{BD}{sinA}=\frac{AD}{sin∠ABD}$,可得sinA=$\frac{3\sqrt{2}×\frac{\sqrt{2}}{2}}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
可得A=60°.

點(diǎn)評 本題考查余弦定理以及正弦定理的應(yīng)用,考查三角形的解法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知方程log${\;}_{2}^{2}$x-2log2x+3-a=0在[1,8]上有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,AA1是平行四邊形ABCD所在平面的一條斜線段,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,且4$\overrightarrow{CR}$=$\overrightarrow{R{A}_{1}}$,則$\overrightarrow{AR}$等于( 。
A.$\frac{4}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow$+$\frac{1}{5}$$\overrightarrow{c}$B.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow$+$\frac{4}{5}$$\overrightarrow{c}$C.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow$+$\frac{1}{5}$$\overrightarrow{c}$D.$\frac{1}{5}$$\overrightarrow{a}$+$\frac{1}{5}$$\overrightarrow$+$\frac{3}{5}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求函數(shù)f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的奇偶性、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,M,N分別是AB,PC的中點(diǎn).求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=(m2-m-1)${x}^{{m}^{2}-2m-3}$,當(dāng)m取什么值時(shí).
(1)f(x)是正比例函數(shù);
(2)f(x)是反比例函數(shù);
(3)f(x)是冪函數(shù),且在第一象限內(nèi)它的圖象是下降曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定點(diǎn)A(0,-1),點(diǎn)B在圓F:(x-1)2+y2=16上一運(yùn)動,線段AB的垂直平分線交BF于P,則動點(diǎn)P的軌跡方程為$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知斜率為-1的直線l與圓C:x2+y2=4交于M,N不同的兩點(diǎn),
(1)求直線l在x軸上的截距的取值范圍:
(2)若弦MN的中點(diǎn)為P,點(diǎn)P的軌跡方程為C′,將圓C:x2+y2=4先向上平移1個(gè)單位長度,再向右平移1個(gè)單位長度,得到圓C″,求C′在C″內(nèi)的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的定義域:
(1)y=$\sqrt{sin(cosx)}$;
(2)y=$\sqrt{1-2cosx}$+lg(2sinx-1).

查看答案和解析>>

同步練習(xí)冊答案