分析 根據(jù)指數(shù)函數(shù)奇偶性,單調(diào)性的性質(zhì)進(jìn)行求解即可.用單調(diào)性的定義取點(diǎn),作差,變形,判斷來證明即可.把原函數(shù)整理成 ${10}^{2x}=\frac{1+y}{1-y}$利用102x的范圍求值域即可.
解答 解:函數(shù)的定義域?yàn)椋?∞,+∞),
則f(-x)=$\frac{1{0}^{-x}-1{0}^{x}}{1{0}^{-x}+1{0}^{x}}$=-$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$=-f(x),
則函數(shù)為奇函數(shù).
$f(x)=\frac{{{{10}^{2x}}-1}}{{{{10}^{2x}}+1}}=1-\frac{2}{{{{10}^{2x}}+1}}$
在(-∞,+∞)上任取x1,x2,且x1>x2
∴f(x1)-f(x2)=$\frac{2}{1{0}^{2{x}_{2}}+1}$-$\frac{2}{1{0}^{2{x}_{1}}+1}$=$\frac{2(1{0}^{2{x}_{1}}-1{0}^{2{x}_{2}})}{(1{0}^{2{x}_{1}}+1)(1{0}^{2{x}_{2}}+1)}$,
而y=10x在R上為增函數(shù),
∴${10^{2{x_1}}}>{10^{2{x_2}}}$,即f(x1)>f(x2)
∴f(x)在R上為增函數(shù).
由$f(x)=\frac{{{{10}^{2x}}-1}}{{{{10}^{2x}}+1}}=1-\frac{2}{{{{10}^{2x}}+1}}$
得${10^{2x}}=\frac{1+y}{1-y}$,而102x>0,即$\frac{1+y}{1-y}>0$,
∴-1<y<1.
所以f(x)的值域是(-1,1).
點(diǎn)評(píng) 本題綜合考查了函數(shù)的奇偶性和單調(diào)性的證明以及對(duì)函數(shù)單調(diào)性的應(yīng)用,在用定義證明或判斷一個(gè)函數(shù)在某個(gè)區(qū)間上的單調(diào)性時(shí),基本步驟是取點(diǎn),作差或作商,變形,判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓 | B. | 拋物線 | C. | 雙曲線 | D. | 橢圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com