11.若cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,$\frac{3π}{2}<α+β<2π$,$\frac{π}{2}<α-β<π$,則sin2β=0.

分析 利用同角三角函數(shù)間的基本關(guān)系求出sin(α-β)與sin(α+β)的值,原式中的角度變形后,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值.

解答 解:cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,$\frac{3π}{2}<α+β<2π$,$\frac{π}{2}<α-β<π$,
∴sin(α+β)=-$\frac{3}{5}$,sin(α-β)=$\frac{3}{5}$,
∴sin2β=sin[α+β-(α-β)]=sin(α+β)cos(α-β)-cos(α+β)sin(α-β)=-$\frac{3}{5}$×$\frac{4}{5}$-(-$\frac{4}{5}$)×$\frac{3}{5}$=0,
故答案為:0.

點(diǎn)評(píng) 此題考查了兩角和與差的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象向左平移$\frac{π}{2}$個(gè)單位后,得到的圖象對(duì)應(yīng)函數(shù)為g(x),則g($\frac{π}{6}$=)( 。
A.0B.-3C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=3sinx•ln(1+x)的部分圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,b=$\sqrt{3}$,B=$\frac{π}{3}$.
(Ⅰ)如果a=2c,求c的值;
(Ⅱ)設(shè)f(A)表示△ABC的周長(zhǎng),求f(A)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)P(x,y)滿足約束條件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≤3}\end{array}\right.$,則點(diǎn)P對(duì)應(yīng)的區(qū)域與坐標(biāo)軸圍成的封閉圖形面積為(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,BC=1,ccosA+acosC=2bcosB,△ABC的面積S=$\sqrt{3}$,則AC等于(  )
A.$\sqrt{13}$B.4C.3D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若方程x3-3ax+2=0(a>0)有三個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍為( 。
A.a>0B.0<a<1C.1<a<3D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是兩個(gè)不共線的向量,已知向量$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+sinα$\overrightarrow{{e}_{2}}$(-$\frac{π}{2}$<α<$\frac{π}{2}$),$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$-$\frac{5}{4}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點(diǎn)共線,則函數(shù)f(x)=2cos(x+α)在[0,π)上的值域?yàn)椋ā 。?table class="qanwser">A.[-1,$\frac{1}{2}$]B.[-2,$\sqrt{3}$]C.(-2,1]D.(-1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\frac{lg(1-{x}^{2})}{|x-2|+a}$奇函數(shù),則a的值為-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案