如圖,⊙O是以AB為直徑的△ABC的外接圓,D的中點(diǎn),連結(jié)AD并延長與過C點(diǎn)的切線交于P,ODBC相交于E

(1)求證:;

(2)求證:;

(3)當(dāng)AC=6,AB=10時(shí),求切線PC的長.

答案:略
解析:

(1)證明:∵D的中點(diǎn),∴∠CAB=∠DOB,∴AC∥OD

∵OAB中點(diǎn),ODCB交于點(diǎn)E,

(2)證明:由弦切角定理知:∠PAC=∠PCD,∠P為公共角,

∴△PAC∽△PCD,,而,

∵DC=BD

(3)解:由AC=6,AB=10,∴BC=8BE=4,OE=3,

∴DE=ODOE=53=2

∵AC∥OE,∠ACB=90°,∠OEB=90°,即OD⊥BC

Rt△BED中,,

(2),

由切割弦定理得,∴CP=15


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧
BC
的中點(diǎn),連接AD并延長,與過C點(diǎn)的切線交于P,OD與BC相交于點(diǎn)E.
(Ⅰ)求證:OE=
1
2
AC;
(Ⅱ)求證:
PD
PA
=
BD2
AC2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-1:幾何證明選講
如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧數(shù)學(xué)公式的中點(diǎn),連接AD并延長,與過C點(diǎn)的切線交于P,OD與BC相交于點(diǎn)E.
(Ⅰ)求證:OE=數(shù)學(xué)公式AC;
(Ⅱ)求證:數(shù)學(xué)公式=數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年5月山西省運(yùn)城市鹽湖區(qū)康杰中學(xué)高三(下)月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

選修4-1:幾何證明選講
如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧的中點(diǎn),連接AD并延長,與過C點(diǎn)的切線交于P,OD與BC相交于點(diǎn)E.
(Ⅰ)求證:OE=AC;
(Ⅱ)求證:=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年5月山西省運(yùn)城市鹽湖區(qū)康杰中學(xué)高三(下)月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

選修4-1:幾何證明選講
如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧的中點(diǎn),連接AD并延長,與過C點(diǎn)的切線交于P,OD與BC相交于點(diǎn)E.
(Ⅰ)求證:OE=AC;
(Ⅱ)求證:=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年遼寧省鞍山一中高考數(shù)學(xué)五模試卷(理科)(解析版) 題型:解答題

選修4-1:幾何證明選講
如圖,⊙O是以AB為直徑的△ABC的外接圓,點(diǎn)D是劣弧的中點(diǎn),連接AD并延長,與過C點(diǎn)的切線交于P,OD與BC相交于點(diǎn)E.
(Ⅰ)求證:OE=AC;
(Ⅱ)求證:=

查看答案和解析>>

同步練習(xí)冊(cè)答案