tan
6
=( 。
A、-
3
B、
3
3
C、
3
D、-
3
3
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:運用誘導公式化簡求值即可.
解答: 解:tan
6
=tan(π-
π
6
)=-tan
π
6
=-
3
3
,
故選:D.
點評:本題考查運用誘導公式化簡求值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,總有x2-x+1>0”的否定是“?x∈R,使得x2-x+1≤0”;命題q:在△ABC中,“A>
π
4
”是“sinA>
2
2
”的必要不充分條件.則有( 。
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某商品在30天內(nèi)每件的銷售價格P(元)和時間t(天)的函數(shù)關系為:P=
t+10,(1≤t≤24)
-t+100,(25≤t≤30)
(t∈N*),該商品的日銷售量Q(件)與時間t(天)的函數(shù)關系為Q=-t+40(1≤t≤30,t∈N*),
(1)當1≤t≤24,t∈N*,哪幾天日銷售金額超過525元;
(2)求日銷售金額的最大值及取得最大值時的t.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是線段P1P2上的一個三等分點,且P1(x1,y1),P2(x2,y2),求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域[-4,4],圖象如圖,則不等式
f(x)
cos2x
<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

側(cè)棱長都為
3
的四棱錐的底面是以2為邊長的正方形,其俯視圖如圖所示,則該四棱錐正視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m∈R,過定點A的動直線l1:x+my=0和過定點B的動直線l2:mx-y-m+3=0=0交于點P(x,y),
(I) 試判斷直線l1與l2的位置關系;  
(Ⅱ) 求|PA|•|PB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)的圖象如圖所示,則f(
7
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x+y)(x-y)6的展開式中x5y2的系數(shù)為
 

查看答案和解析>>

同步練習冊答案