已知奇函數(shù)f(x)滿足f(x+2)=f(x),且0<x<1時(shí),f(x)=2x,求f(log215)的值.
考點(diǎn):函數(shù)的周期性,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用奇函數(shù)f(x)滿足f(x+2)=f(x),可得周期為2,f(-x)=-f(x),f(log215)=f(log
 
15
16
2
),運(yùn)用性質(zhì)求解即可.
解答: 解:∵奇函數(shù)f(x)滿足f(x+2)=f(x),∴周期為2,f(-x)=-f(x),
∴f(log215)=f(log
 
15
16
2
)=-f(
log
16
15
2
)=-2log
 
16
15
2
=2log
 
15
2
-8

故:f(log215)的值為=2log
 
15
2
-8
,
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,周期性,結(jié)合對(duì)數(shù)運(yùn)算知識(shí),難度不大,但是容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)和圓C2:x2+y2=r2都過點(diǎn)P(-1,0),且橢圓C1的離心率為
2
2
,過點(diǎn)P作斜率為k1,k2的直線分別交橢圓C1,圓C2于點(diǎn)A,B,C,D(如圖),k1=λk2,若直線BC恒過定點(diǎn)Q(1,0),則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2tx+1,x∈[-1,1],利用單調(diào)性求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
cos9°-sin15°sin6°
cos15°sin6°+sin9°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,∠α的終邊落在y=-
3
4
x所確定的函數(shù)圖象上,求sinα、cosα和tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<3},B={x|21-x+a≤0},C={x|x2-2(a+7)x+5≤0},如果A⊆B∩C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11層大樓,3個(gè)人進(jìn)一部電梯,每層都停,三個(gè)人從不同的樓層下的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

單位向量
a
、
b
所成角為θ,任意向量
c
滿足(
a
-
c
)•(
b
-
c
)=0.
(1)當(dāng)θ=90°,求|
c
|的最大值;
(2)當(dāng)θ=60°,求|
c
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={k|y=
kx2-6kx+k+8
,x∈R},集合B={x|a≤x≤2a+1},若A∩B=B,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案