A. | (-∞,-1] | B. | (-∞,-1) | C. | (-∞,0] | D. | (-∞,0) |
分析 先對函數(shù)進(jìn)行求導(dǎo),根據(jù)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減即可得到答案.
解答 解:由題意可知f′(x)=-x+$\frac{x+2}$<0,在x∈(-2,+∞)上恒成立,
即b<x(x+2)在x∈(-2,+∞)上恒成立,
由于y=x(x+2)=(x+1)2-1≥-1,
所以b≤-1,
故選:A.
點評 本題主要考查導(dǎo)數(shù)的正負(fù)和原函數(shù)的增減性的問題.即導(dǎo)數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)數(shù)小于0時原函數(shù)單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
男 | 女 | 總計 | |
喜愛 | 40 | 60 | 100 |
不喜愛 | 20 | 20 | 40 |
總計 | 60 | 80 | 140 |
p(k2≥k0 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 非p:?x∈R,x<sin x | B. | 非p:?x∈R,x≤sin x | ||
C. | 非p:?x∈R,x≤sin x | D. | 非p:?x∈R,x<sin x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com