已知函數(shù)f(x)=aln x+bx2在點(diǎn)(1,f(1))處的切線方程為x-y-1=0.
(1)求f(x)的表達(dá)式;
(2)若f(x)滿足f(x)≥g(x)恒成立,則稱f(x)是g(x)的一個(gè)“上界函數(shù)”,如果函數(shù)f(x)為g(x)=-ln x(t為實(shí)數(shù))的一個(gè)“上界函數(shù)”,求t的取值范圍;
(3)當(dāng)m>0時(shí),討論F(x)=f(x)+-x在區(qū)間(0,2)上極值點(diǎn)的個(gè)數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如果直線是平面的斜線,那么在平面內(nèi)
A.不存在與平行的直線 B.不存在與垂直的直線
C.與垂直的直線只有一條 D.與平行的直線有無窮多條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知O為原點(diǎn),E(-1,0),F(xiàn)(1,0),點(diǎn)A、P、Q滿足
∥
(1)求軌跡方程;
(2)設(shè)M、N是戶的軌跡上兩點(diǎn),若+2=3,求MN的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:(a>b>0)的左、右焦點(diǎn)為Fl、F2,離心率為e直線l:y=ex+a與x軸、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)Fl關(guān)于直線l的對(duì)稱點(diǎn)為P,設(shè)
(1)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線C:y2=4x的焦點(diǎn)為F,直線y=2x-4與C交于A,B兩點(diǎn),則cos∠AFB=( )
A. B. C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有 種不同的方法(用數(shù)字作答).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com