(本題滿分12分)
已知數(shù)列是遞增數(shù)列,且滿足。
(1)若是等差數(shù)列,求數(shù)列的通項公式;
(2)對于(1)中,令,求數(shù)列的前項和

(1)(2)

解析試題分析:(1)根據(jù)題意:
 ,
                                                 ……4分
(2)

兩式相減得:
            ……12分
考點:本小題主要考查等差數(shù)列的性質、等差數(shù)列的通項公式、二次方程根與系數(shù)的關系和錯位相減法求數(shù)列的前n項的和,考查學生的運算求解能力.
點評:等差數(shù)列和等比數(shù)列是高考中重點考查的兩類數(shù)列,錯位相減法也經(jīng)?疾,要仔細計算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項和為Sn.
(1)求S5S7的值;
(2)求證:對任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知數(shù)列中,,數(shù)列滿足。
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列中的最大項和最小項,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知二次函數(shù)同時滿足:①不等式的解集有且只有一個元素;②在定義域內(nèi)存在,使得不等式成立.
設數(shù)列的前項和,
(1)求數(shù)列的通項公式;
(2)數(shù)列中,令,,求;
(3)設各項均不為零的數(shù)列中,所有滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù)。令為正整數(shù)),求數(shù)列的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知數(shù)列的前n項和滿足(>0,且)。數(shù)列滿足
(I)求數(shù)列的通項。
(II)若對一切都有,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,點在函數(shù)的圖象上,其中
(1)求;
(2)證明數(shù)列是等比數(shù)列;
(3)設,求及數(shù)列的通項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l0分) 在等比數(shù)列中,已知.
求數(shù)列的通項公式;
設數(shù)列的前n項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:數(shù)列的前項和為,且滿足,.
(Ⅰ)求:,的值;
(Ⅱ)求:數(shù)列的通項公式;
(Ⅲ)若數(shù)列的前項和為,且滿足,求數(shù)列
項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)
已知曲線,從上的點軸的垂線,交于點,再從點軸的垂線,交于點,設

(1)求數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,試比較的大小;
(3)記,數(shù)列的前項和為,試證明:

查看答案和解析>>

同步練習冊答案