分析 作出棱錐的高,則頂點在底面的射影為底面中心,利用正方形的性質(zhì)可求出底面中心到底面頂點的距離,借助勾股定理求出棱錐的高,代入體積公式計算.
解答 解:取底面中心O,過O作OE⊥AB,垂足為E,連接SO,AO,
∵四棱錐S-ABCD為正四棱錐,
∴SO⊥平面ABCD,∵AO?平面ABCD,
∴SO⊥AO.
∵四邊形ABCD是邊長為2的正方形,
∴AE=$\frac{1}{2}$AB=1,∠OAE=$\frac{1}{2}$∠BAD=45°,
∴OE=AE=1,
∵OE2+AE2=AO2,
∴AO=$\sqrt{2}$,∵SA=$\sqrt{3}$,
∴SO=$\sqrt{S{A}^{2}-A{O}^{2}}$=1.
V=$\frac{1}{3}$•SABCD•SO=$\frac{1}{3}$•22•1=$\frac{4}{3}$.
故答案為$\frac{4}{3}$.
點評 本題考查了正三棱錐的結(jié)構(gòu)特征和體積計算,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{5}$,1) | B. | (-∞,-$\frac{1}{5}$)∪(1,+∞) | C. | [-$\frac{1}{5}$,1) | D. | (-∞,-$\frac{1}{5}$]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4π}$ | B. | $\frac{\sqrt{3}}{4π}$ | C. | $\frac{\sqrt{3}}{36π}$ | D. | $\frac{\sqrt{6}}{36π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
不喜歡英語 | 喜歡英語 | 總計 | |
男生 | 40 | 18 | 58 |
女生 | 15 | 27 | 42 |
總計 | 55 | 45 | 100 |
p(K2≥k) | 0.100 | 0.050 | 0.025 | 0.01 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com