【題目】如圖是函數(shù)yf(x)的導(dǎo)函數(shù)yf′(x)的圖象,則下面判斷正確的是(   )

A. (2,1)f(x)是增函數(shù) B. (1,3)f(x)是減函數(shù)

C. x2,f(x)取極大值 D. x4,f(x)取極大值

【答案】C

【解析】由條件知由于f′(x)≥0函數(shù)f(x)d單調(diào)遞增;f′(x)≤0單調(diào)f(x)單調(diào)遞減
觀察f′(x)的圖象可知,
x∈(-2,1)時,導(dǎo)函數(shù)的圖線負后正,故函數(shù)先遞減,后遞增,故A錯誤
x∈(1,3)時,導(dǎo)函數(shù)現(xiàn)正后負,函數(shù)先增后減,故B錯誤
x∈(1,2)時函數(shù)遞增,x∈(2,3)函數(shù)單調(diào)減,故得到函數(shù)在2處是極大值;
同理,由函數(shù)的圖象可知函數(shù)在4處取得函數(shù)的極小值,故D錯誤
故答案選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟收入增加了一倍,實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟收入構(gòu)成比例,得到如下餅圖,則下面結(jié)論中不正確的是( )

建設(shè)前經(jīng)濟收入構(gòu)成比例 建設(shè)后經(jīng)濟收入構(gòu)成比例

A. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,種植收入減少

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若對于,恒成立,求實數(shù)的取值范圍;

(2)若對于,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的對稱軸方程;

2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若, 分別是三個內(nèi)角 , 的對邊, ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的最小值為1,f(0)f(2)3.

(1)f(x)的解析式

(2)f(x)在區(qū)間[2a,a1]上不單調(diào),求實數(shù)a的取值范圍;

(3)在區(qū)間[1,1],yf(x)的圖象恒在y2x2m1的圖象上方試確定實數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問7分,2小問5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時曲線在點處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)恰有兩個不相同的零點,求實數(shù)的值;

(2)記為函數(shù)的所有零點之和,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知矩形的長為,寬為 、邊分別在軸、軸的正半軸上, 點與坐標原點重合.將矩形折疊,是點落在線段.

Ⅰ)當點落在中點時,求折痕所在的直線方程.

Ⅱ)若折痕所在直線的斜率為,求折痕所在的直線方程與軸的交點坐標.(答案中可以出現(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),滿足約束條件.

(1)畫出不等式表示的平面區(qū)域,并求該平面區(qū)域的面積;

(2)若目標函數(shù)的最大值為4,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案