9.已知數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn}不是等差數(shù)列.

分析 (Ⅰ)數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*.a(chǎn)2=$\sqrt{2}$-1,同理可得:a3=$\sqrt{3}$$-\sqrt{2}$,a4=$\sqrt{4}-\sqrt{3}$,歸納猜想:an
(Ⅱ)由(Ⅰ)得:S1=a1=1,S2=a1+a2=$\sqrt{2}$,S3=S2+a3=$\sqrt{3}$,假設(shè)數(shù)列{Sn}是等差數(shù)列,則S1,S2,S3成等差數(shù)列,推出矛盾.

解答 解:(Ⅰ)數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
∴a2=$\sqrt{2}$-1,同理可得:a3=$\sqrt{3}$$-\sqrt{2}$,a4=$\sqrt{4}-\sqrt{3}$,…,
歸納猜想:an=$\sqrt{n}$-$\sqrt{n-1}$.
(Ⅱ)證明:由(Ⅰ)得:S1=a1=1,S2=a1+a2=$\sqrt{2}$,S3=S2+a3=$\sqrt{3}$,
假設(shè)數(shù)列{Sn}是等差數(shù)列,
則S1,S2,S3成等差數(shù)列,
所以S1+S3=2S2
即1+$\sqrt{3}$=2$\sqrt{2}$,
兩邊平方得$\sqrt{3}$=2
這顯然不成立,所以假設(shè)錯(cuò)誤,所以數(shù)列{Sn}不是等差數(shù)列.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式、反證法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)定義在(-∞,+∞)上.則“曲線:y=f(x)過原點(diǎn)”是“f(x)為奇函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c.已知$a=2\sqrt{3}$,$A=\frac{π}{3}$.
(Ⅰ)當(dāng)b=2時(shí),求c;
(Ⅱ)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x),g(x)在區(qū)間(0,5)內(nèi)導(dǎo)數(shù)存在,且有以下數(shù)據(jù):
x1234
f(x)2341
f′(x)3421
g(x)3142
g′(x)2413
則函數(shù)y=f(x)•g(x)在x=2處的導(dǎo)數(shù)值是16;曲線f(x)在點(diǎn)(1,f(1))處的切線方程是y=3x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知分段函數(shù)y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若執(zhí)行如圖所示的程序框圖,則框圖中的條件應(yīng)該填寫( 。
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}\right.$,則f(-2017)=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知acosB=bcosA,△ABC的形狀( 。
A.等邊三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則數(shù)列{an2}的前n項(xiàng)和Tn=( 。
A.(2n-1)2B.4n-1C.$\frac{{4}^{n}-1}{3}$D.$\frac{{4}^{n+1}-4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案