【題目】如圖,四棱錐中,底面是邊長為的正方形,平面平面,,,為的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)連接交于,則為的中點(diǎn),利用中位線的性質(zhì)可得出,然后利用直線與平面平行的判定定理可證明出平面;
(2)取的中點(diǎn),連接,利用面面垂直的性質(zhì)定理可得出平面,由此可計(jì)算出三棱錐的體積,并計(jì)算出的面積,并設(shè)點(diǎn)到平面的距離為,由可計(jì)算出點(diǎn)到平面的距離的值.
(1)如圖,連接交于,連接,則為的中點(diǎn).
又為上的中點(diǎn),所以.
又平面,平面,所以平面;
(2)如圖,取的中點(diǎn),連接,
因?yàn)?/span>,,所以,,,
又平面平面,平面平面,平面,
所以平面.
同理可得平面,、平面,,.
又因?yàn)?/span>,,所以平面,
平面,則,所以,
所以,又,
設(shè)點(diǎn)到平面的距離為,
由,得,
所以,即點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且,過棱的中點(diǎn),作交于點(diǎn).
(1)證明:平面;
(2)若面與面所成二面角的大小為,求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E :的焦距為4,兩條準(zhǔn)線間的距離為8,A,B分別為橢圓E的左、右頂點(diǎn).
(1)求橢圓E 的標(biāo)準(zhǔn)方程;
(2)已知圖中四邊形ABCD 是矩形,且BC=4,點(diǎn)M,N分別在邊BC,CD上,AM與BN相交于第一象限內(nèi)的點(diǎn)P .①若M,N分別是BC,CD的中點(diǎn),證明:點(diǎn)P在橢圓E上;②若點(diǎn)P在橢圓E上,證明:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;
(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點(diǎn),將△ADE沿AE折起,得到如圖2所示的四棱錐D1—ABCE,其中平面D1AE⊥平面ABCE.
(1)證明:BE⊥平面D1AE;
(2)設(shè)F為CD1的中點(diǎn),在線段AB上是否存在一點(diǎn)M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù),其中xnyn∈R,n∈N*,i為虛數(shù)單位,,z1=3+4i,復(fù)數(shù)zn在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Zn.
(1)求復(fù)數(shù)z2,z3,z4的值;
(2)是否存在正整數(shù)n使得?若存在,求出所有滿足條件的;若不存在,請說明理由;
(3)求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓:,點(diǎn)在橢圓上,過點(diǎn)作圓的切線,其切線長為橢圓的短軸長.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn)在橢圓上,且,直線與軸交于點(diǎn).設(shè)直線,的斜率分別為,,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com