解不等式:|x+1|-|x-3|>-4.
考點(diǎn):絕對(duì)值不等式的解法
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:去絕對(duì)值符號(hào),分當(dāng)x>3時(shí),當(dāng)x<-1時(shí),當(dāng)-1≤x≤3時(shí),求出解,再求并集即可.
解答: 解:當(dāng)x>3時(shí),原不等式等價(jià)為(x+1)-(x-3)>-4,
即4>-4,∴x>3;
當(dāng)x<-1時(shí),原不等式等價(jià)為-(x+1)+(x-3)>-4,
即-4>-4,無解;
當(dāng)-1≤x≤3時(shí),原不等式等價(jià)為(x+1)+(x-3)>-4,
即x>-1.∴-1<x≤3.
故原不等式的解集為{x|x>-1}.
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,考查分類討論的思想方法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=sin(
π
2
x+θ)(0<θ<π)是最小正周期為T的偶函數(shù),那么(  )
A、T=4π,θ=
π
2
B、T=4,θ=
π
2
C、T=4,θ=
π
4
D、T=4π,θ=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosπx的圖象與函數(shù)y=(
1
2
|x-1|(-3≤x≤5)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=( 。
A、8B、2014
C、2015D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線以橢圓
x2
25
+
y2
9
=1長軸的兩個(gè)端點(diǎn)為焦點(diǎn),其實(shí)軸長為2
5
,則雙曲線的漸近線的斜率為( 。
A、±2
B、±
4
3
C、±
1
2
D、±
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1滿足:實(shí)軸長為
2
,離心率為
3

(1)求曲線C1的方程;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,計(jì)算:(1)
4sinα-2cosα
5cosα+3sinα
;(2)sin2θ+7sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,求下列各式的值:
(1)tan(α+
π
4
)
;
(2)
6sinα+cosα
3sinα-2cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
2
,離心率為
3
3

(1)求橢圓的方程;
(2)過橢圓左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若AB長為
8
3
5
,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案