7.如圖所示,在空間直角坐標(biāo)系中,D是坐標(biāo)原點(diǎn),有一棱長為a的正方體ABCD-A1B1C1D1,E和F分別是體對(duì)角線A1C和棱AB上的動(dòng)點(diǎn),則|EF|的最小值為( 。
A.$\sqrt{2}a$B.$\frac{{\sqrt{2}}}{2}a$C.aD.$\frac{1}{2}a$

分析 由題意,|EF|的最小值為體對(duì)角線A1C和棱AB間的距離,顯然E,F(xiàn)分別是體對(duì)角線A1C和棱AB的中點(diǎn)時(shí),滿足題意,即可得出結(jié)論.

解答 解:由題意,|EF|的最小值為體對(duì)角線A1C和棱AB間的距離,顯然E,F(xiàn)分別是體對(duì)角線A1C和棱AB的中點(diǎn)時(shí),滿足題意,此時(shí)|EF|=$\sqrt{(\frac{\sqrt{3}}{2}a)^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{2}}{2}$a,
故選:B.

點(diǎn)評(píng) 本題考查空間兩點(diǎn)間的距離,考查異面直線間的距離,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線ax+by-1=0平分圓x2+y2-4x-4y-8=0的周長,則 ab的最大值為$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線C:mx2+ny2=1(mn<0)的一條漸近線與圓x2+y2-6x-2y+9=0相切,則C的離心率等于( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{5}{3}$或$\frac{25}{16}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,如圖所示作PD⊥x軸,且$\overrightarrow{DM}$=λ$\overrightarrow{DP}$(0<λ<1)
(1)求點(diǎn)M的軌跡方程C;
(2)過方程C對(duì)應(yīng)曲線的右焦點(diǎn)作斜率為1的直線lAB與曲線C交于E,F(xiàn)兩點(diǎn),曲線C上是否存在點(diǎn)H使得△EFH的重心為坐標(biāo)原點(diǎn)?若存在,求出λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)$A({2\sqrt{2},2})$在拋物線C:x2=2py(p>0)上.
(1)求拋物線C的方程;
(2)設(shè)定點(diǎn)D(0,m),過D作直線y=kx+m(k>0)與拋物線C交于M(x1,y1),N(x2,y2)(y1<y2)兩點(diǎn),連接ON(O為坐標(biāo)原點(diǎn)),過點(diǎn)M作垂直于x軸的直線交ON于點(diǎn)G.
①證明點(diǎn)G在一條定直線上;
②求四邊形ODMG的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U={x|x≥-3},集合A={y|y=x2+4x+5},$B=\{x|y=\sqrt{1-{{log}_2}x}\}$,則(∁UA)∩B=( 。
A.[-3,2]B.[-3,1)C.(0,1)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對(duì)一批零件的長度(單位:mm)進(jìn)行抽樣檢測(cè),檢測(cè)結(jié)果的頻率分布直方圖如圖所示.根據(jù)標(biāo)準(zhǔn),零件長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.
(Ⅰ)用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,求其為二等品的概率;
(Ⅱ)已知檢測(cè)結(jié)果為一等品的有6件,現(xiàn)隨機(jī)從三等品中取兩件,求取出的兩件產(chǎn)品中恰有1件的長度在區(qū)間[30,35)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lg(x+1),g(x)=lg(1-x).
(Ⅰ)求函數(shù)f(x)+g(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)+g(x)的奇偶性,并說明理由;
(Ⅲ)判斷函數(shù)f(x)+g(x)在區(qū)間(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.國慶期間,高速公路堵車現(xiàn)象經(jīng)常發(fā)生.某調(diào)查公司為了了解車速,在贛州西收費(fèi)站從7座以下小型汽車中按進(jìn)收費(fèi)站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進(jìn)行抽樣調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h))分成六段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后,得到如圖的頻率分布直方圖.
(1)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從這40輛車速在[60,70)的小型汽車中任意抽取2輛,求抽出的2輛車車速都在[65,70)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案