12.已知向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$,$\overrightarrow$=n$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,若$\overrightarrow{a}$∥$\overrightarrow$,則mn=-6.

分析 根據(jù)平面向量的共線定理,列出方程組,即可求出mn的值.

解答 解:∵向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共線,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$,$\overrightarrow$=n$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow$,
∴$\overrightarrow{a}$=λ$\overrightarrow$,且λ∈R,
即2$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$=λ(n$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$),
∴$\left\{\begin{array}{l}{2=λn}\\{m=-3λ}\end{array}\right.$,
即2×(-3)λ=mnλ,
∴mn=-6.
故答案為:-6.

點評 本題考查了平面向量的共線定理與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ-N(μ,σ2),則p(μ-σ<ξ≤μ+σ)=0.6826,p(μ-2σ<ξ≤μ+2σ)=0.9544,p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓x2+y2-4x+2y+2=0的圓心坐標(biāo)為(2,-1),半徑為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了增強(qiáng)消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機(jī)抽取50人,從女生中隨機(jī)抽取70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計
男生153550
女生304070
總計4575120
(Ⅰ)試判斷是否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
K2=$\frac{a(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
k01.3232.0722.7063.8415.0246.635
(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機(jī)選出6名組成宣傳小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=2(a+sin2x)cosbx-sincx,x∈[0,π]
(1)若a=c=0,b=2求滿足f(x)=$\frac{\sqrt{3}}{2}$所有x值的集合;
(2)若a=$\frac{\sqrt{3}}{2}$,b=1,c=3,求f(x)最大值和最小值;
(3)在(2)的條件下,分別將函數(shù)y=f(x)的圖象上所有點的縱、橫坐標(biāo)縮短到原來的一半,得到函數(shù)y=g(x)的圖象,求不等式g(x)<$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1-x}{{e}^{x}}$.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的零點和極值;
(3)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{{e}^{2}}$成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在書柜的某一層上原來共有5本不同的書,如果保持原有書的相對順序不變,再插進(jìn)去3本不同的書,那么共有336種不同的插入法.(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知四邊形ABCD,O為任意一點,若$\overrightarrow{OA}$$+\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$,那么四邊形ABCD的形狀是( 。
A.正方形B.平行四邊形C.矩形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.曲線y=$\frac{1}{x}$(x>0)在點P(x0,y0)處的切線為l.若直線l與x,y軸的交點分別為A,B,則△OAB(其中O為坐標(biāo)原點)的面積為(  )
A.4+2$\sqrt{2}$B.2$\sqrt{2}$C.2D.5+2$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊答案