4.已知F是拋物線y2=8x的焦點(diǎn),A,B是該拋物線上兩個(gè)不同的點(diǎn),|AF|+|BF|=12,則線段AB中點(diǎn)M的橫坐標(biāo)為( 。
A.16B.8C.6D.4

分析 根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線段AB的中點(diǎn)到y(tǒng)軸的距離.

解答 解:F是拋物線y2=8x的焦點(diǎn)F(2,0)準(zhǔn)線方程x=-2,
設(shè)A(x1,y1)   B(x2,y2
∴|AF|+|BF|=x1+2+x2+2=12,
解得x1+x2=8
∴線段AB的中點(diǎn)橫坐標(biāo)為:4.
故選:D

點(diǎn)評(píng) 本題考查拋物線的基本性質(zhì),利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知等比數(shù)列{an}是遞增數(shù)列,且${a_1}{a_{13}}+2{a_7}^2=4π$,則tan(a2a12)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={x|x>1},B={x|(x+1)(x-2)<0},則A∪B=(  )
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,m),若$\overrightarrow{a}$⊥$\overrightarrow$,則m的值為( 。
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,a=3,c=2,cosB=$\frac{1}{3}$,則b=3;sinC=$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出的S的值為n,則m+n=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2+1,則a5=(  )
A.7B.9C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{alnx+b}{e^x}$(a,b為常數(shù),無(wú)理數(shù)e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是y=$\frac{1}{e}$.
(1)求a,b的值;
(2)證明不等式1-x-xlnx<$\frac{e^x}{x+1}(1+{e^{-2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若關(guān)于x的方程x2-mx+2=0在(1,3)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案