【題目】秉承綠水青山就是金山銀山的發(fā)展理念,某市環(huán)保部門(mén)通過(guò)制定評(píng)分標(biāo)準(zhǔn),先對(duì)本市50%的企業(yè)進(jìn)行評(píng)估,評(píng)出四個(gè)等級(jí),并根據(jù)等級(jí)給予相應(yīng)的獎(jiǎng)懲,如下表所示:

評(píng)估得分

評(píng)定等級(jí)

不合格

合格

良好

優(yōu)秀

獎(jiǎng)勵(lì)(萬(wàn)元)

20

40

80

1)環(huán)保部門(mén)對(duì)企業(yè)抽查評(píng)估完成后,隨機(jī)抽取了50家企業(yè)的評(píng)估得分(分)為樣本,得到如下頻率分布表:

評(píng)估得分

頻率

0.04

0.10

0.20

0.12

其中、表示模糊不清的兩個(gè)數(shù)字,但知道樣本評(píng)估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個(gè)企業(yè)評(píng)估得分中隨機(jī)抽取3個(gè),若以樣本中頻率為概率,求至少有兩家企業(yè)的獎(jiǎng)勵(lì)不少于40萬(wàn)元的概率;

2)某企業(yè)為取得一個(gè)好的得分,在評(píng)估前投入80萬(wàn)元進(jìn)行技術(shù)改造,由于技術(shù)水平問(wèn)題,被評(píng)定為合格”“良好優(yōu)秀的概率分別為,,且由此增加的產(chǎn)值分別為20萬(wàn)元,40萬(wàn)元和60萬(wàn)元.設(shè)該企業(yè)當(dāng)年因改造而增加的利潤(rùn)為萬(wàn)元,求的數(shù)學(xué)期望.

【答案】1;(2

【解析】

1)由樣本評(píng)估得分的平均數(shù)是73.6得到,再由,解方程組即可

2)依題意,的可能取值應(yīng)該為:增加的產(chǎn)值+獎(jiǎng)勵(lì)-投資;該企業(yè)可能被抽中的概率是,不被抽中的概率也是;被抽中時(shí)又分合格、良好、優(yōu)秀三種情況,不被抽中時(shí)也又分三種情況,的可能取值有:,分別列出即可.

解:(1)∵樣本評(píng)估得分的平均數(shù)是73.6,

①,

②,

由①②解得,

則企業(yè)評(píng)估得分不少于70分的頻率為 ,

∴至少有兩家企業(yè)的獎(jiǎng)勵(lì)不少于40萬(wàn)元的概率

故答案為.

2)依題意,的可能取值應(yīng)該為:增加的產(chǎn)值+獎(jiǎng)勵(lì)-投資,當(dāng)企業(yè)被抽中時(shí)才有獎(jiǎng)勵(lì),否則獎(jiǎng)勵(lì)為0,且該企業(yè)被抽中的概率為

的可能取值有:

當(dāng)該企業(yè)未被抽中且合格時(shí)利潤(rùn),則,

當(dāng)該企業(yè)未被抽中且良好時(shí)利潤(rùn)為,企業(yè)被抽中且合格時(shí)利潤(rùn),所以

當(dāng)該企業(yè)未被抽中且優(yōu)秀時(shí)利潤(rùn),

當(dāng)該企業(yè)被抽中且良好時(shí)利潤(rùn),

當(dāng)該企業(yè)被抽中且優(yōu)秀時(shí)利潤(rùn),,

的分布列為

0

60

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,并解答.已知等差數(shù)列的公差,前項(xiàng)和為,若_______,數(shù)列滿足,,.

1)求的通項(xiàng)公式;

2)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線上,且,點(diǎn)的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的數(shù)列,,設(shè),即,,…,中的最大值,則稱(chēng)數(shù)列是數(shù)列,的“和諧數(shù)列”.

1)設(shè),,求,,的值,并證明數(shù)列是等差數(shù)列;

2)設(shè)數(shù)列,都是公比為q的正項(xiàng)等比數(shù)列,若數(shù)列是等差數(shù)列,求公比q的取值范圍;

3)設(shè)數(shù)列滿足,數(shù)列是數(shù)列,的“和諧數(shù)列”,且m為常數(shù),2,…,k),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷(xiāo)某種新鮮蔬菜(以下簡(jiǎn)稱(chēng)A蔬菜),購(gòu)入價(jià)為200/袋,并以300/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的A蔬菜沒(méi)有售完,則批發(fā)商將沒(méi)售完的A蔬菜以150/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把A蔬菜低價(jià)處理完,且當(dāng)天不再購(gòu)進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷(xiāo)量,統(tǒng)計(jì)了100A蔬菜在每天的前8小時(shí)內(nèi)的銷(xiāo)售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購(gòu)入6A蔬菜,有4A蔬菜在前8小時(shí)內(nèi)分別被4名顧客購(gòu)買(mǎi),剩下2袋在8小時(shí)后被另2名顧客購(gòu)買(mǎi).現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150/袋的價(jià)格購(gòu)買(mǎi)的概率是多少?

2)若今年A蔬菜上市的100天內(nèi),該蔬菜批發(fā)商每天都購(gòu)進(jìn)A蔬菜5袋或者每天都購(gòu)進(jìn)A蔬菜6袋,估計(jì)這100天的平均利潤(rùn),以此作為決策依據(jù),該蔬菜批發(fā)商應(yīng)選擇哪一種A蔬菜的進(jìn)貨方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.其中,

1)若.求證:.

2)若不等式對(duì)恒成立,試求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象過(guò)點(diǎn),且相鄰兩個(gè)最高點(diǎn)與最低點(diǎn)的距離為

1)求函數(shù)的解析式和單調(diào)增區(qū)間;

2)若將函數(shù)圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,再將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,得到函數(shù)的圖象,求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+2S677,a10a510.

1)求數(shù)列{an}的通項(xiàng)公式;

2)數(shù)列{bn}滿足:b11,bnbn1ann+1n≥2),求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為拋物線上的兩個(gè)不同的點(diǎn),且線段的中點(diǎn)在直線上,當(dāng)點(diǎn)的縱坐標(biāo)為1時(shí),點(diǎn)的橫坐標(biāo)為.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若點(diǎn)軸兩側(cè),拋物線的準(zhǔn)線與軸交于點(diǎn),直線的斜率分別為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案