(2009•越秀區(qū)模擬)已知一動(dòng)圓P(圓心為P)經(jīng)過定點(diǎn)Q(
2
,0),并且與定圓C:(x+
2
)
2
+y2=16
(圓心為C)相切.
(1)求動(dòng)圓圓心P的軌跡方程;
(2)若斜率為k的直線l經(jīng)過圓x2+y2-2x-2y=0的圓心M,交動(dòng)圓圓心P的軌跡于A、B兩點(diǎn).是否存在常數(shù)k,使得
CA
+
CB
=2
CM
?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.
分析:(1)設(shè)P(x,y),動(dòng)圓半徑為r,則|PQ|=r.因?yàn)辄c(diǎn)Q在圓C的內(nèi)部,所以動(dòng)圓P與定圓C內(nèi)切,所以|PC|=4-r.
所以|PC|+|PQ|=4>|CQ|=2
2
,由此能夠求出動(dòng)圓圓心P的軌跡方程.
(2)假設(shè)存在常數(shù)k,使得
CA
+
CB
=2
CM
,即
AM
=
MB
,所以M為AB的中點(diǎn).圓方程可化為(x-1)2+(y-1)2=2,所以圓心M為(1,1).直線l的方程為y-1=k(x-1).由
y-1=k(x-1)
x2
4
+
y2
2
=1
,得(1+2k2)x2+(4k-4k2)x+(2k2-4k-2)=0.因?yàn)辄c(diǎn)M(1,1)在橢圓
x2
4
+
y2
2
=1
的內(nèi)部,所以恒有△>0.由此能夠推導(dǎo)出存在常數(shù)k=-
1
2
,使得
CA
+
CB
=2
CM
解答:(1)解:設(shè)P(x,y),動(dòng)圓半徑為r,則|PQ|=r.
因?yàn)辄c(diǎn)Q在圓C的內(nèi)部,所以動(dòng)圓P與定圓C內(nèi)切,
所以|PC|=4-r.
所以|PC|+|PQ|=4>|CQ|=2
2
,
根據(jù)橢圓的定義,動(dòng)圓圓心P的軌跡是以C、Q為焦點(diǎn)的橢圓.
因?yàn)闄E圓的中心在原點(diǎn),焦點(diǎn)在x軸上,
故可設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)

由2a=4,2c=2
2
,得a=2,c=
2
,b=
2

所以橢圓方程為
x2
4
+
y2
2
=1

所以動(dòng)圓圓心P的軌跡方程為
x2
4
+
y2
2
=1

(2)解:假設(shè)存在常數(shù)k,使得
CA
+
CB
=2
CM

AM
=
MB
,所以M為AB的中點(diǎn).
圓方程可化為(x-1)2+(y-1)2=2,
所以圓心M為(1,1).
因?yàn)橹本l經(jīng)過點(diǎn)M,
所以直線l的方程為y-1=k(x-1).
y-1=k(x-1)
x2
4
+
y2
2
=1

消去y得(1+2k2)x2+(4k-4k2)x+(2k2-4k-2)=0.
因?yàn)辄c(diǎn)M(1,1)在橢圓
x2
4
+
y2
2
=1
的內(nèi)部,
所以恒有△>0.
設(shè)A(x1,y1),B(x2,y2),
x1+x2=
4k2-4k
1+2k2

因?yàn)镸為AB的中點(diǎn),
所以
x1+x2
2
=1
,
2k2-2k
1+2k2
=1
,
解得k=-
1
2

所以存在常數(shù)k=-
1
2
,
使得
CA
+
CB
=2
CM
點(diǎn)評(píng):本題通過幾何量的轉(zhuǎn)化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關(guān)系處理,考查學(xué)生的運(yùn)算能力.通過向量與幾何問題的綜合,考查學(xué)生分析轉(zhuǎn)化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.綜合性強(qiáng),難度大,容易出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•越秀區(qū)模擬)已知數(shù)列{an}為等差數(shù)列,且a3=7,a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an=log3bn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•越秀區(qū)模擬)如圖是一個(gè)幾何體的三視圖.若該幾何體的側(cè)面積為8π,則正(主)視圖中a=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•越秀區(qū)模擬)設(shè)實(shí)數(shù)x,y滿足
x-y+1≥0
x+y-3≥0
x≤2
,則z=x2+y2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•越秀區(qū)模擬)曲線f(x)=(2x-3)ex在點(diǎn)(1,f(1))處的切線方程為
y=ex-2e
y=ex-2e

查看答案和解析>>

同步練習(xí)冊(cè)答案