數(shù)列{an}是公差不小0的等差數(shù)列a1、a3,是函數(shù)f(x)=1n(x2-6x+6)的零點(diǎn),數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且Tn=1-2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn
【答案】分析:(1)由已知,a1、a3,是令f(x)=0即x2-6x+6=1的兩根,求出a1、a3,易求數(shù)列{an}的通項(xiàng)公式,Tn=1-2bn,令n=1得T1=1-2b1,解得b1=,當(dāng)n≥2時(shí),bn=Tn-Tn-1=2bn-1-2bn,數(shù)列{bn}是等比數(shù)列,利用公式求出數(shù)列{bn}的通項(xiàng)公式.
(2)由(1)得cn=anbn=(2n-1)•=,利用錯(cuò)位相消法求和即可.
解答:解:(1)令f(x)=0得x2-6x+6=1,解得x=1或5,由于d>0,所以a1=1,a3=5,2d=2,d=2,∴an=2n-1
由于Tn=1-2bn,令n=1得T1=1-2b1,解得b1=,當(dāng)n≥2時(shí),bn=Tn-Tn-1=2bn-1-2bn,∴bn=bn-1,∴數(shù)列{bn}是等比數(shù)列,bn=
(2)由(1)得cn=anbn=(2n-1)•=
Sn=
Sn=
兩式相減得
=[]-,
∴Sn=5-(2n+5)
點(diǎn)評(píng):本題考查數(shù)列通項(xiàng)公式的求法,考查數(shù)列前n項(xiàng)和的求法,要熟練掌握數(shù)列求和的錯(cuò)位相減法.錯(cuò)位相減法適用于通項(xiàng)為一等差數(shù)列乘一等比數(shù)列組成的新數(shù)列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,前n項(xiàng)和為Sn,滿足a22+a32=a42+a52,S7=7,則使得
amam+1am+2
為數(shù)列{an}中的項(xiàng)的所有正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州一模)數(shù)列{an}是公差不小0的等差數(shù)列a1、a3,是函數(shù)f(x)=1n(x2-6x+6)的零點(diǎn),數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且Tn=1-2bn(n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是公差不為0的等差數(shù)列,其前n項(xiàng)和為Sn,且S9=135,a3,a4,a12成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)m,使
a
2
m
+
a
2
m+2
2am+1
仍為數(shù)列{an}中的一項(xiàng)?若存在,求出滿足要求的所有正整數(shù)m;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,它的前n項(xiàng)和為Sn,且S1、S2、S4成等比數(shù)列,則
a4
a1
等于( 。
A、3B、4C、6D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案