16.在如圖所示的矩形中隨機投擲30000個點,則落在曲線C下方(曲線C為正態(tài)分布N(1,1)的正態(tài)曲線)的點的個數(shù)的估計值為( 。
A.4985B.8185C.9970D.24555

分析 計算曲線下方的面積,得出落在曲線C下方的概率,從而得出落在曲線C下方的點的個數(shù).

解答 解:∵設(shè)隨機變量為X,則X~N(1,1),
∴P(0<X<2)=0.6826,
P(2<X<3)=$\frac{1}{2}$(0.9544-0.6826)=0.1359,
∴曲線C下方的概率為P(0<X<3)=0.6826+0.1359=0.8185,
∴落在曲線C下方的點的個數(shù)的估計值為$\frac{0.8185}{3}×30000$=8185.
故選B.

點評 本題考查了正態(tài)分布,古典概型的概率計算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知$f(α)=\frac{{sin({2π-α})cos({π+α})cos({\frac{π}{2}-α})}}{{sin({3π-α})sin({\frac{9π}{2}+α})}}+cos({2π-α})$.
(1)化簡f(α);(2)若$f(α)=\frac{{\sqrt{10}}}{5}$,求$\frac{1}{sinα}+\frac{1}{cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)正數(shù)a,b滿足a+2b=2,則$\frac{2}{a}+\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知命題:①“任意能被2整除的整數(shù)都是偶數(shù)”的否定是“任意能被2整除的整數(shù)不都是偶數(shù)”②“菱形的兩條對角線互相垂直”的逆命題;③“若a>b,a,b∈R,則a+c>b+c”的逆否命題;④“若a+b≠3,則a≠1或b≠2”的否命題;⑤若“p或q”為假命題,則“非p且非q”是真命題.上述命題中真命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在棱長為a的正方體ABCD-A1B1C1D1中,M是AA1中點,則點A到平面MBD的距離是$\frac{{\sqrt{6}}}{6}a$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知A(x1,y1),B(x2,y2)是拋物線C:x2=2py(p>0)上不同兩點.
(1)設(shè)直線l:y=$\frac{p}{4}$與y軸交于點M,若A,B兩點所在的直線方程為y=x-1,且直線l:y=$\frac{p}{4}$恰好平分∠AFB,求拋物線C的標準方程.
(2)若直線AB與x軸交于點P,與y軸的正半軸交于點Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直線AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直線AB的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.定義在(0,+∞)上函數(shù)f(x)滿足:①當x∈[1,3)時,f(x)=1-|x-2|;②f(3x)=3f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)-a的零點從小到大依次為x1,x2,…,xn….若a∈(1,3),則x1+x2+…+x2n=6(3n-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-asinx-1(a∈R).
(Ⅰ)若a=1,求f(x)在x=0處的切線方程;
(Ⅱ)若f(x)≥0對一切x∈[0,1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若($\frac{x}{2}$-$\frac{1}{3x}$)a的展開式中只有第5項的二項式系數(shù)最大,則展開式中常數(shù)項是$\frac{35}{648}$.

查看答案和解析>>

同步練習冊答案