11.在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,M是AA1中點(diǎn),則點(diǎn)A到平面MBD的距離是$\frac{{\sqrt{6}}}{6}a$.

分析 利用等體積法,VA-MBD=VB-AMD.求出△MDB的面積,然后求距離即可.

解答 解:A到面MBD的距離由等積變形可得.
VA-MBD=VB-AMD.即:$\frac{1}{12}$a3=$\frac{1}{3}$×d×$\frac{1}{2}$×$\sqrt{2}$a×$\sqrt{\frac{5}{4}{a}^{2}-\frac{2}{4}{a}^{2}}$即易求d=$\frac{\sqrt{6}}{6}$a.
故答案為:$\frac{\sqrt{6}}{6}a$.

點(diǎn)評(píng) 本題考查點(diǎn)到平面的距離,等體積法求距離的方法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某影院有40排座位,每排有46個(gè)座位,一個(gè)報(bào)告會(huì)上坐滿了聽(tīng)眾,會(huì)后留下座號(hào)為20的所有聽(tīng)眾進(jìn)行座談,這是運(yùn)用了( 。
A.抽簽法B.隨機(jī)數(shù)表法C.系統(tǒng)抽樣法D.放回抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在?ABCD中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow59pprhz$,則下列等式中不正確的是( 。
A.$\overrightarrow{a}+\overrightarrow$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow$=$\overrightarrownp9z7p7$C.$\overrightarrow$-$\overrightarrow{a}$=$\overrightarrowrlvpzlt$D.$\overrightarrow{c}$-$\overrightarrowlrt35dl$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.命題“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”的否定是?x∈(0,$\frac{π}{2}$),tanx≤sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)x,y∈R+且xy-(x+y)=1,則( 。
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在如圖所示的矩形中隨機(jī)投擲30000個(gè)點(diǎn),則落在曲線C下方(曲線C為正態(tài)分布N(1,1)的正態(tài)曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( 。
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷售公司7月份至12月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)x和銷售量y之間的一組數(shù)據(jù)如表所示:
月份i789101112
銷售單價(jià)xi(元)99.51010.5118
銷售量yi(件)111086514
(1)根據(jù)7至11月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(wèn)(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤(rùn)?(注:利潤(rùn)=銷售收入-成本).
參考公式:回歸直線方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,參考數(shù)據(jù):$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若曲線y=lnx的一條切線是直線$y=\frac{1}{2}x+b$,則實(shí)數(shù)b的值為-1+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某出版社檢驗(yàn)?zāi)硟?cè)書(shū)的成本費(fèi)(單位:元)與印刷數(shù)(單位:千冊(cè))之間的關(guān)系,經(jīng)統(tǒng)計(jì)得到數(shù)據(jù)(表一)并對(duì)其作初步的處理,得到如圖所示的散點(diǎn)圖及一些統(tǒng)一量的值(表二).
表一
x123571011202530
y9.025.274.063.032.592.282.211.891.801.75
表二 
 $\overline{x}$ $\overline{y}$ $\overline{w}$ $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$)
 11.4 3.39 0.249 934.4 934.4-139.03 6.196
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根據(jù)散點(diǎn)圖可知更適宜作成本費(fèi)與印刷冊(cè)數(shù)的回歸方程類型,試依據(jù)表中數(shù)據(jù)求出關(guān)于的回歸方程(結(jié)果精確到0.01);
(2)從已有十組數(shù)據(jù)的前五組數(shù)據(jù)中任意抽取兩組數(shù)據(jù),求抽取的兩組數(shù)據(jù)中有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值超過(guò)0.02的概率.
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…,(un,vn),其回歸直線v=$\widehat{α}$+$\widehat{β}$u的斜估計(jì)分別為
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案