11.在等差數(shù)列{an}中,a1+a7+a13=π,則cos(a2+a12)的值=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由等差數(shù)列中項的性質(zhì),可得a1+a13=2a7,求得a7=$\frac{π}{3}$,再由a2+a12=2a7,結(jié)合特殊角的余弦函數(shù)值,即可得到所求值.

解答 解:等差數(shù)列{an}中,
a1+a7+a13=π,由a1+a13=2a7,
可得3a7=π,即a7=$\frac{π}{3}$,
可得${a_2}+{a_{12}}=2{a_7}=\frac{2π}{3}$,
$cos({a_2}+{a_{12}})=-\frac{1}{2}$,
故選:B.

點評 本題考查等差數(shù)列的性質(zhì),考查三角函數(shù)的求值,正確運用等差數(shù)列的中項性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.水平放置的圓柱形物體的三視圖是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在下列各圖中,相關(guān)關(guān)系最強的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等差數(shù)列{an}中,a2=2,d=2,則S10=( 。
A.200B.100C.90D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為$\frac{π}{4}$.
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個單位長度后,再將得到的圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知tanα=7,求sin2α+sinαcosα+3cos2α 的值為(  )
A.$\frac{56}{50}$B.$\frac{57}{50}$C.$\frac{58}{50}$D.$\frac{59}{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從{1,3,5,7,9}中隨機選取一個數(shù)為a,從{1,3,5}中隨機選取一個數(shù)為b,則b>a的概率是( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若M為△ABC所在平面內(nèi)的一點,且滿足4$\overrightarrow{AM}$=2$\overrightarrow{AB}$+3$\overrightarrow{AC}$,直線BC與AM交于點D,則$\frac{|\overrightarrow{BD}|}{|\overrightarrow{BC}|}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當(dāng)b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數(shù)a的取值范圍;
(2)已知a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案