若函數(shù)f(x)=|a|x2+x+1在[-1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:顯然a可以等于0,而a≠0時(shí),f(x)為二次函數(shù),所以根據(jù)二次函數(shù)的單調(diào)性知-
1
2|a|
≤-1
,解出a再合并a=0即可得到a的取值范圍.
解答: 解:若a=0,f(x)=x+1,滿足在[-1,+∞)上單調(diào)遞增;
若a≠0,則:-
1
2|a|
≤-1
,解得-
1
2
≤a≤
1
2
,且a≠0;
綜上得a的取值范圍為[-
1
2
1
2
]

故答案為:[-
1
2
,
1
2
].
點(diǎn)評(píng):考查一次函數(shù)的單調(diào)性,二次函數(shù)的單調(diào)性和對(duì)稱軸的關(guān)系,解絕對(duì)值不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,AB⊥平面BCD,∠BCD=90°,點(diǎn)E是線段AD上一點(diǎn)(不與線段AD重合),F(xiàn)是點(diǎn)B在線段AC上的射影,求證:平面BEF⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)y=sinx(-π<x<0)上兩不同點(diǎn),試根據(jù)函數(shù)圖象特征判定下列四個(gè)不等式的正確性:
sinx1
x1
sinx2
x2
;
②sinx1<sinx2;
1
2
(sinx1+sinx2)>sin
x1+x2
2
;
④sin
x1
2
>sin
x2
2

其中正確的不等式的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
a•2x+a-2
2x+1
,x∈R為奇函數(shù).求使f(x)>
1
2
的x值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中AB=BC,E為BC的中點(diǎn),點(diǎn)D在射線BA上,連接DE,過(guò)點(diǎn)B作BM⊥DE于M,過(guò)點(diǎn)A作AN⊥DE于N.
(1)當(dāng)點(diǎn)D是邊AB的中點(diǎn),如圖1,易證明:AN+BM=2EM;
(2)當(dāng)點(diǎn)D的位置如圖2和圖3時(shí),上述結(jié)論是否成立,若成立,請(qǐng)給與在證明,若不成立,線段AN、BM、EM之間又有怎樣的相等關(guān)系,寫(xiě)出你的猜想,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A、B為銳角且B<A,sinA=
5
5
,sin2B=
3
5

(1)求角C的值;
(2)求證:5cosAcos(A+3B)=2sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足:an+1=2(an-1)2+1且a1=3,an>1
(1)設(shè)bn=log2(an-1),求證:{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圖中陰影部分表示的角的集合為
 
(包括邊界)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線c:y=2x2的焦點(diǎn)為F,準(zhǔn)線為l以F為圓心且與l相切的圓與該拋物線相交于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案