A. | [0,$\frac{1}{4}$] | B. | [-$\frac{1}{4}$,0] | C. | (-∞,$\frac{1}{4}$] | D. | [$\frac{1}{4}$,+∞) |
分析 由題意知,直線2ax-by+2=0經(jīng)過圓的圓心(-1,2),可得a+b=1,再利用基本不等式求得ab的最大值.
解答 解:由題意可得,直線2ax-by+2=0經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),
故有-2a-2b+2=0,即 a+b=1,故1=a+b≥2$\sqrt{ab}$,求得 ab≤$\frac{1}{4}$,當(dāng)且僅當(dāng) a=b=$\frac{1}{2}$時(shí)取等號(hào),
故ab的最大值是$\frac{1}{4}$,
故選:C.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,基本不等式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $3\sqrt{2}$ | C. | $\sqrt{26}$ | D. | $\sqrt{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3,13,23,33,43 | B. | 7,12,23,36,41 | C. | 5,10,15,20,25 | D. | 9,16,25,36,49 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com