16.函數(shù)f(x)=$\sqrt{{{log}_2}x-2}$的定義域是[4,+∞)..

分析 函數(shù)f(x)=$\sqrt{{{log}_2}x-2}$有意義,只需log2x-2≥0,且x>0,解不等式即可得到所求定義域.

解答 解:函數(shù)f(x)=$\sqrt{{{log}_2}x-2}$有意義,
只需log2x-2≥0,且x>0,
解得x≥4.
則定義域為[4,+∞).
故答案為:[4,+∞).

點評 本題考查函數(shù)的定義域的求法,注意運(yùn)用偶次根式被開方數(shù)非負(fù),對數(shù)的真數(shù)大于0,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式組$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$,表示的平面區(qū)域的面積為$\frac{121}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C:x2+y2+2x-4y+1=0關(guān)于直線2ax-by+2=0對稱,則ab的取值范圍是( 。
A.[0,$\frac{1}{4}$]B.[-$\frac{1}{4}$,0]C.(-∞,$\frac{1}{4}$]D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若x∈(0,$\frac{π}{3}$],則函數(shù)y=sinx+cosx的值域是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下六個關(guān)系式:①0∈{0},②{0}?∅,③0.3∉Q,④0∈N,⑤{a,b}⊆{b,a},⑥{x|x2-2=0,x∈Z}是空集,其中錯誤的個數(shù)是(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.統(tǒng)計局就某地居民的月收入情況調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本頻率分布直方圖,每個分組包含左端點,不包含右端點.
(1)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,需再從這10 000人中用分層抽樣法抽出100人作進(jìn)一步分析,則月收入在2 000 至2 500元的應(yīng)抽取多少人?
(2)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù);
(3)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左、右焦點分別為F1,F(xiàn)2,P為C的右支上一點,且|PF2|=$\frac{8}{15}$|F1F2|,則△PF1F2的面積等于( 。
A.$\frac{80}{3}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.頂點在x軸上,兩頂點間的距離為8,離心率e=$\frac{5}{4}$的雙曲線為( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0的左、右焦點分別為F1、F2,以F1F2為直徑的圓被直線$\frac{x}{a}$+$\frac{y}$=1截得的弦長為$\sqrt{6}$a,則雙曲線的離心率為$\sqrt{2}$:

查看答案和解析>>

同步練習(xí)冊答案