分析 (1)直接利用有理指數(shù)冪的運(yùn)算性質(zhì)和對數(shù)的運(yùn)算性質(zhì)化簡求值;
(2)把分子中的1替換為平方關(guān)系,化為含有正切的代數(shù)式得答案.
解答 解:(1)${27}^{\frac{2}{3}}$-2log23•log2$\frac{1}{8}$+lg4+2lg5
=$({3}^{3})^{\frac{2}{3}}-3×(-3)+2(lg2+lg5)$
=9+9+2=20;
(2)∵tanx=-$\frac{1}{3}$,
∴$\frac{1}{2sinxcosx+co{s}^{2}x}$=$\frac{si{n}^{2}x+co{s}^{2}x}{2sinxcosx+co{s}^{2}x}$
=$\frac{ta{n}^{2}x+1}{2tanx+1}=\frac{(-\frac{1}{3})^{2}+1}{2•(-\frac{1}{3})+1}$=$\frac{10}{3}$.
點(diǎn)評 本題考查有理指數(shù)冪的化簡與求值,考查了對數(shù)的運(yùn)算性質(zhì),考查了同角三角函數(shù)基本關(guān)系式的應(yīng)用,是基礎(chǔ)的計(jì)算題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{18}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 135° | D. | -45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函數(shù) | |
B. | 函數(shù)$f(x)=(1-x)\sqrt{\frac{1+x}{1-x}}$是偶函數(shù) | |
C. | 函數(shù)$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函數(shù) | |
D. | 函數(shù)$y=\frac{{\sqrt{9-{x^2}}}}{{|{x+4}|+|{x+3}|}}$的圖象關(guān)于y軸對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |f(x)|-g(x)是奇函數(shù) | B. | f(x)-|g(x)|是奇函數(shù) | C. | |f(x)|+g(x)是偶函數(shù) | D. | f(x)+|g(x)|是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x+y}{2}$>x>$\sqrt{xy}$>y | B. | x>$\frac{x+y}{2}$>y>$\sqrt{xy}$ | C. | x>y>$\frac{x+y}{2}$>$\sqrt{xy}$ | D. | x>$\frac{x+y}{2}$>$\sqrt{xy}$>y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a6>b6 | B. | a6=b6 | C. | a6<b6 | D. | a6>b6或a6<b6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com