7.已知數(shù)列{an}的前n項和Sn滿足Sn=a(Sn-an+1)(a為常數(shù),且a>0),且4a3是a1與2a2的等差中項.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{2n+1}{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

分析 (1)由4a3是a1與2a2的等差中項,可得2×4a3=a1+2a2.利用Sn=a(Sn-an+1),分別取n=1,2,3,可得a1,a2,a3,代入解得a.再利用遞推關(guān)系即可得出an
(2)bn=$\frac{2n+1}{{a}_{n}}$=(2n+1)•2n,利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵4a3是a1與2a2的等差中項,∴2×4a3=a1+2a2
∵Sn=a(Sn-an+1),∴a1=a(a1-a1+1),a1+a2=a(a1+a2-a2+1),a1+a2+a3=a(a1+a2+a3-a3+1),
解得a1=a,a2=a2,a3=a3,
∴8a3=a+2a2,a>0,
化為8a2-2a-1=0,
解得a=$\frac{1}{2}$.
∴Sn=$\frac{1}{2}$(Sn-an+1),
化為Sn=1-an
當n≥2時,an=Sn-Sn-1=1-an-(1-an-1),
化為$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{2}$,
∴數(shù)列{an}是等比數(shù)列,首項與公比都為$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n}$.
(2)bn=$\frac{2n+1}{{a}_{n}}$=(2n+1)•2n,
∴數(shù)列{bn}的前n項和Tn=3×2+5×22+7×23+…+(2n+1)•2n,
2Tn=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1
∴-Tn=3×2+2(22+23+…+2n)-(2n+1)•2n+1=2+2×$\frac{2({2}^{n}-1)}{2-1}$-(2n+1)•2n+1=-2-(1-2n)•2n+1,
∴Tn=2+(2n-1)•2n+1

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、遞推關(guān)系、“錯位相減法”,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=cos(πx+$\frac{π}{6}$)的一個單調(diào)增區(qū)間是( 。
A.[-$\frac{2}{3}$,$\frac{1}{3}$]B.[$\frac{1}{3}$,$\frac{4}{3}$]C.[-$\frac{1}{6}$,$\frac{5}{6}$]D.[$\frac{5}{6}$,$\frac{11}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.$\overrightarrow{a}$+$\overrightarrow$=(2,-8),$\overrightarrow{a}$$-\overrightarrow$=(-8,16),$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(5,-12),$\overrightarrow{a}$•$\overrightarrow$=-63,cosθ=-$\frac{63}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c.
(Ⅰ)若$\frac{b+a}{a}$=$\frac{sinB}{sinB-sinA}$,且2sinAsinB=2sin2C,試判斷△ABC形狀.
(Ⅱ)若b-c=2acos(60°+C),求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AC=1,BC=$\sqrt{3}$,M是邊BC上靠近C的一個四等分點,若N是BC邊上的動點,則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C的對邊分別是a,b,c,已知(2c-a)cosB=bcosA,ac=b,則△ABC面積的最小值為$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓線$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,如圖所示,A(a,0),B(0,-b)原點到直線AB的距離為$\frac{4}{\sqrt{5}}$.
(1)求橢圓的標準方程;
(2)若直線l:y=kx+1(k≠0)交橢圓于不同的兩點E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓周上,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓兩焦點${F_1}({-\sqrt{3},0}),{F_2}({\sqrt{3},0})$,并且經(jīng)過點$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求橢圓的方程;
(2)若過點A(0,2)的直線l與橢圓交于不同的兩點M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)F(x)=($\frac{lnx}{x}$)2+(a-1)$\frac{lnx}{x}$+1-a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則(1-$\frac{ln{x}_{1}}{{x}_{1}}$)2(1-$\frac{ln{x}_{2}}{{x}_{2}}$)(1-$\frac{ln{x}_{3}}{{x}_{3}}$)的值為( 。
A.1-aB.a-1C.-1D.1

查看答案和解析>>

同步練習(xí)冊答案