4.在直角坐標(biāo)系中,以點(diǎn)(1,2)為圓心,1為半徑的圓必與y軸相切,與x軸相離.

分析 點(diǎn)P到x軸的距離是2,圓P的半徑是1,所以可判斷圓與x,y軸的位置關(guān)系.

解答 解:∵P(1,2),即2>1,
∴以P為圓心,以1為半徑的圓與x軸的位置關(guān)系是相離,與y軸相切,
故答案為相切,相離.

點(diǎn)評(píng) 直線和圓的位置關(guān)系的確定一般是利用圓心到直線的距離與半徑比較來(lái)判斷.若圓心到直線的距離是d,半徑是r,則①d>r,直線和圓相離,沒(méi)有交點(diǎn);②d=r,直線和圓相切,有一個(gè)交點(diǎn);③d<r,直線和圓相交,有兩個(gè)交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)求不等式的解集:-x2+4x+5<0
(2)解關(guān)于x的不等式:x2+(1-a)x-a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知二次函數(shù)f(x)=ax2-x+c(x∈R)的值域?yàn)閇0,+∞),則$\frac{2}{a}$+$\frac{2}{c}$的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.命題“若x2<2,則$|x|<\sqrt{2}$”的逆否命題是“若|x|≥$\sqrt{2}$,則x2≥2”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從點(diǎn)(1,0)射出的光線經(jīng)過(guò)直線y=x+1反射后的反射光線射到點(diǎn)(3,0)上,則該束光線經(jīng)過(guò)的最短路程是( 。
A.$2\sqrt{5}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)求函數(shù)$f(x)=x+\sqrt{1-2x}$的值域;
(2)已知$f(x)+2f(\frac{1}{x})=3x-2$,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y有如下的統(tǒng)計(jì)資料 若由資料知y對(duì)x呈線性相關(guān)關(guān)系,
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
參考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}^{2}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$
試求:
(1)線性回歸方程.
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用大約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),設(shè)$a=f({{{log}_4}7}),b=f({{{log}_{\frac{1}{2}}}3})$,c=f(0.20.6),則a,b,c的大小關(guān)系是( 。
A.c<b<aB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={x||x-2|<a},集合$B=\left\{{x\left|{\frac{2x-1}{x+2}≤1}\right.}\right\}$,且A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案