【題目】已知函數(shù)f(x)=ax﹣sinx(a∈R).
(1)當(dāng)時,f(x)0恒成立,求正實數(shù)a的取值范圍;
(2)當(dāng)a≥1時,探索函數(shù)F(x)f(x)﹣cosx+a﹣1在(0,π)上的零點個數(shù),并說明理由.
【答案】(1);(2)見解析
【解析】
(1)由已知分離參數(shù)后構(gòu)造函數(shù),轉(zhuǎn)化為求解函數(shù)的最值或范圍,結(jié)合導(dǎo)數(shù)可求;
(2)由已知結(jié)合導(dǎo)數(shù)分析函數(shù)的性質(zhì),然后結(jié)合函數(shù)的零點判定定理可求.
解:(1)因為,
所以,
令,,
再令m(x)xcosx﹣sinx,m'(x)cosx﹣xsinx﹣cosx﹣xsinx0,
所以m(x)在(0,)上單調(diào)遞減,
所以m(x)m(0)=0.
所以g'(x)0,則g(x)在(0,)上單調(diào)遞減,
所以g(x)g(),
所以a,
又a0,
即正實數(shù)a的取值范圍是(0,].
(2)F(x)f(x)﹣cosx+a﹣1ax﹣sinx﹣cosx+a﹣1,
則,
因為x∈(0,π),
故,
又a≥1,
故F′(x)0對x∈(0,π)恒成立,
即F(x)在區(qū)間(0,π)單調(diào)遞增;
又F(0)=a﹣2,F(π)=a(1+π)0,
故當(dāng)1≤a2時,F(0)=a﹣20,此時F(x)在區(qū)間(0,π)內(nèi)恰好有1個零點;
當(dāng)a≥2時,F(0)=a﹣2≥0,此時F(x)在區(qū)間(0,π)內(nèi)沒有零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:().若,,,四點中有且僅有三點在橢面C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點,F為橢圓C的右焦點,過點F的直線l分別與橢圓C交于M,N兩點,,求證:直線,關(guān)于x軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為射線交曲線C于點A,傾斜角為α的直線l過線段OA的中點B且與曲線C交于P、Q兩點.
(1)求曲線C的直角坐標(biāo)方程及直線l的參數(shù)方程;
(2)當(dāng)直線l傾斜角α為何值時, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左、右焦點分別為F1、F2,過點F1作圓x2+y2=a2的切線交雙曲線右支于點M,若tan∠F1MF2=2,又e為雙曲線的離心率,則e2的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為等腰梯形,AB=4,AD=DC=CB=2,△ADC沿AC折起,使得平面ADC⊥平面ABC,E為AB的中點,連接DE,DB(如圖2).
(1)求證:BC⊥AD
(2)求直線DE與平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點為,曲線上任意一點到的距離等于該點到直線的距離.
(Ⅰ)求及曲線的方程;
(Ⅱ)若直線與橢圓只有一個交點,與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,若,問直線是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春季,某出租汽車公同決定更換一批新的小汽車以代替原來報廢的出租車,現(xiàn)有采購成本分別為11萬元/輛和8萬元/輛的A,B兩款車型,根據(jù)以往這兩種出租車車型的數(shù)據(jù),得到兩款出租車型使用壽命頻數(shù)表如表:
(1)填寫如表,并判斷是否有99%的把握認(rèn)為出租車的使用壽命年數(shù)與汽車車有關(guān)?
(2)以頻率估計概率,從2020年生產(chǎn)的A和B的車型中各隨機(jī)抽1車,以X表示這2車中使用壽命不低于7年的車數(shù),求X的分布列和數(shù)學(xué)期望;
(3)根據(jù)公司要求,采購成本由出租公司負(fù)責(zé),平均每輛出租每年上交公司6萬元,其余維修和保險等費用自理,假設(shè)每輛出租車的使用壽命都是整數(shù)年,用頻率估計每輛出租車使用壽命的概率,分別以這100輛出租車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會選擇采購哪款車型?
參考公式:,其中n=a+b+c+d.
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com